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Abstract

How much of the spatial distribution of economic activity today is determined by

history rather than by geographic fundamentals? And if history matters for spatial

allocations, does it also matter for overall efficiency? This paper develops a forward-

looking dynamic framework for the theoretical and empirical study of such questions.

We derive conditions on the strength of agglomeration externalities under which equi-

libria are unique and yet temporary historical shocks can have particularly persistent,

or even permanent (i.e. path-dependent) consequences. When estimated using U.S.

data from 1800-2000, this model displays multi-century persistence from small and

temporary shocks as well as path dependence (with large aggregate welfare effects)

throughout much of our estimated parameter range.
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1 Introduction

Economic activity today is staggeringly concentrated. For example, more than 1/6th of value-

added in the United States is produced in just three cities that occupy less than 1/160th of

its land area. Perhaps even more remarkable are the historical accidents that may have

determined the location of these three cities—one was a Dutch trading post, one a pueblo

for 22 adult and 22 children settlers designated by a Spanish governor to honor the angels,

and one a river mouth known to Algonquin residents for its wild garlic (or, chicago-ua).

There is no shortage of examples in which the quirks of history appear to influence

the current location of economic activity through either persistence—the long-lived depen-

dence of current outcomes on temporary events—or path dependence—where temporary

events can permanently shape long-run outcomes; see Nunn (2014) and Voth (2021). But

how widespread should we expect these phenomena to be in the spatial economies around

us? Going further, “does history matter only when it matters little?”—in Rauch’s (1993)

phrase—because it serves merely to reshuffle the current location of economic activity with-

out much affecting aggregate efficiency?

In this paper we develop a new framework designed to shed light on these questions

and apply it to data from the United States between 1800 and 2000. Our model features

agglomeration externalities, forward-looking agents, and many heterogeneous locations that

interact through costly trade and migration. We derive conditions under which such an

environment can feature unique dynamics that nevertheless display substantial persistence

and even path dependence. Finally, our simulations, based on our estimated parameter

values, display exactly such phenomena for the U.S. spatial economy: small historical shocks

leave a sizable trace for several centuries and much of our estimated parameter range implies

that such shocks can cause large and permanent differences in long-run aggregate welfare.

To arrive at this conclusion, we begin in Section 2 by describing a dynamic model of

economic geography that combines essential features from two generations of work in the

field. An earlier tradition—pioneered by Krugman (1991), Matsuyama (1991), Fujita et al.

(1999), and Ottaviano (2001)—combined agglomeration externalities with infinitely-lived

and forward-looking agents who inhabit a small number of symmetric locations. More re-

cent work—such as that by Desmet et al. (2018), Caliendo et al. (2019), and Kleinman

et al. (2021)—has pioneered the study of more empirically realistic settings with many lo-

cations that have arbitrarily heterogeneous characteristics such as trade costs, migration

costs, productivities and amenities. But to date it has done so without the combination of

agglomeration externalities and forward-looking agents that is necessary to embrace both

sides of the “history” (i.e. path dependence) versus “expectations” (i.e. the potential for
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self-fulfilling equilibria based on forward-looking behavior) trade-off that was central to the

earlier tradition.

In this model environment, we obtain three new theoretical results about dynamic eco-

nomic geography models. Our first result characterizes a condition for (bounded) equilibria

to be unique, regardless of the underlying path of geographic fundamentals, as is important

for the quantitative questions that we pose here. Indeed, we develop this result by first

providing a new statement about uniqueness in general economic systems that feature an

arbitrary set of variables (such as populations, wages, prices, etc.) that interact nonlin-

early in both forward- and backward-looking manners across heterogeneous entities (such as

locations). Our second result highlights how temporary shocks may be particularly persis-

tent—that is, feature a slow rate of convergence to a steady-state—when an economy gets

close to the parameter threshold at which uniqueness is not guaranteed. Finally, our third

result characterizes necessary (and “globally” sufficient) conditions for the economy to fea-

ture multiple steady-states, which then creates the potential for path-dependent impacts of

a temporary shock that could push an economy toward a permanently different outcome.

The conditions in these results hinge on the strength of agglomeration forces relative to

dispersion forces and the extent to which agents discount the future. However, we draw a

new distinction between contemporaneous agglomeration spillovers, which operate within the

same period, and historical spillovers, which operate with a lag. In particular, our condition

for uniqueness depends on the two types of spillovers differently—and, indeed, in a region of

the parameter space that is empirically relevant to our application, this condition depends

only on the contemporaneous version of spillovers—whereas it is the sum of contemporaneous

and historical spillovers that matters for the existence of multiple steady-states. As a result,

there exists a plausible parameter range in which transition paths are known to be unique

and yet still have the potential to generate the rich phenomena of path dependence.

Section 3 turns to our empirical application, which draws on long-run spatial data avail-

able for the United States from 1800-2000. We estimate both contemporaneous spillover

elasticities, which have been the focus of recent work, and historical spillovers, which have

received far less attention. Our estimating equations take the familiar form of a multi-location

labor supply and demand system—as in the canonical Rosen-Roback tradition (Rosen 1979,

Roback 1982, Glaeser 2008) but augmented to allow for interactions across locations due

to costly trade and migration. Doing so requires estimates of historical bilateral migration

and trade costs, which we obtain by using migration data from individual-count Census

records and trade flow data that we have digitized from historical records on intranational

commodity shipments and a novel non-linear least squares approach to estimation.

Despite this added empirical flexibility, parameter identification—even with an underly-
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ing potential for multiplicity—is still assured via familiar exclusion restrictions of the sort

discussed by Roback (1982), expressed as time-varying versions of these restrictions in our

case. For the locational labor supply equation, which is identified from demand-side varia-

tion, we use shifters of agricultural productivity due to the changing importance of certain

crops over time and the advent of higher intensity cultivation methods. And for the loca-

tional labor demand equation we use shifters of the relevance of temperature extremes over

time, which plausibly have changed the amenity value of certain locations, and hence labor

supply, due to the development of technologies such as air conditioning. Our estimates im-

ply modest productivity spillovers, but an important role for positive historical spillovers on

amenities—which are, as we show, consistent with models that feature durable locational

investments, for example in housing. These values are within the parameter region that

corresponds to uniqueness, slow persistence, and the potential for path dependence.

Based on these parameter estimates we turn in Section 4 to a simulation exercise that is

designed to illustrate the role that historical shocks can play in a spatial economy. Amidst

the so-called “Technological Revolution” at the dawn of the 20th Century (c.f. Landes 2003)

it seems plausible that innovations such as electrification and the automobile had differential

impacts across space for reasons that could be partially attributed to chance. For example,

Henry Ford was born on a farm near Detroit, and Thomas Edison chose the 1901 Pan-

American Exposition to demonstrate mass illumination via his new AC power, earning the

host city of Buffalo its nickname, the “City of Light”. Inspired by such anecdotes of hap-

penstance, our counterfactual exercise asks what would have happened to the trajectories of

two similar locations if their 1900 productivity fundamentals were randomly swapped, while

holding all other exogenous characteristics constant both before and after 1900. In practice,

we pair locations on the basis of their closest match in terms of 1900 population—for ex-

ample, Buffalo (with a population of 436,000 in 1900) is paired with Cincinnati (412,000).

In order to derive general lessons from such counterfactual swaps, we conduct one hundred

simulations in which every location has an equal chance of either drawing its factual 1900

productivity or its counterfactual swap partner’s 1900 productivity.

Even these relatively modest counterfactual swap histories turn out to have dramatic

consequences. For example, across our simulations the median location has an elasticity

(when estimated using technology shocks as an instrumental variable) of 0.37 between its

population in 2000 and its population in 1900—so that a 10% drop in population due to

an unfavorable but one-off productivity shock leaves the location about 4% smaller even a

century later. And while trade and migration opportunities mean that the present discounted

value of residing in a location is less affected by local historical shocks, we find that this

welfare persistence elasticity is still 0.09 for the median location.
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Simulating the economies forward into the future—undoubtedly a heroic exercise, but

one that illustrates the workings of a model like ours—we find that the long arm of history

can reach very far into the future. When letting our simulations run forwards within the

range of historical spillover elasticities consistent with the 95% confidence interval of our

estimates we find that our historical swaps leave permanent impacts throughout much (but

not all) of this range. This indicates that our model U.S. spatial economy is perched on the

cusp of a bifurcation between a plausible region of the parameter space in which temporary,

local shocks will and will not leave a path-dependent trace on the spatial distribution of

economic activity. Perhaps surprisingly, this bifurcation is also consequential in terms of

long-run efficiency—many of our alternative random swap configurations result in permanent

aggregate welfare levels that differ by a factor of almost two. Our answer to Rauch’s (1993)

question is therefore that when history matters, it seems to matter a great deal.

Related literature

These findings shed new light on a number of strands of related work. First, we are inspired by

an empirical literature that documents examples of spatial persistence and path dependence,

or lack thereof, in the aftermath of historical events in a vast array of settings. Seminal

work by Davis & Weinstein (2002, 2008) and Bleakley & Lin (2012, 2015) is emblematic

of such lessons since Bleakley & Lin (2012, 2015) demonstrate relatively persistent (multi-

century) impacts of long-obsolescent shipping technologies in the U.S. whereas Davis &

Weinstein (2002, 2008) find that World War II bombing left only a relatively transitory

(multi-decade) spatial trace in Japan. Wider examples from the U.S. alone include enduring

impacts of slavery (Nunn 2008), political boundaries (Dippel 2014), flooding (Hornbeck &

Naidu 2014), mining activity (Glaeser et al. 2015), fire damage (Hornbeck & Keniston 2017),

frontier exposure (Bazzi et al. 2020), immigration (Sequeira et al. 2020), and war destruction

(Feigenbaum et al. 2022)—among many other factors (see, e.g., Kim & Margo 2014).1

Our findings clarify the conditions under which one could expect spatial persistence and

path dependence to arise, which may rationalize the heterogeneous effects seen in prior work.

More generally, much of the above literature is primarily interested in the hypothesis that

1Further afield, Dell (2010) documents persistent negative effects of forced labor institutions in Peru,
Redding et al. (2011) uncover evidence for persistence in the location of airline hubs amidst the division and
reunification of Germany, Jedwab & Moradi (2016) find persistent impacts of colonial railroads throughout
most of Africa, Hanlon (2017) illustrates a long-lived spatial imprint resulting from the interruption of supplies
to Britain’s cotton textile industry cities during the U.S. Civil War, Henderson et al. (2018) describe how the
differing extent to which physical geography attributes matter today for early and late developing countries
is consistent with long persistence, Michaels & Rauch (2018) highlight the differing extents of persistence of
Roman towns in England and France, and Dell & Olken (2020) document the enduring industrial development
around sites of colonial investment in Indonesia.
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historical shocks leave persistent traces on the location of economic activity because funda-

mentals themselves are persistent (e.g. that historical institutions affect modern economies

because they affect modern institutions, which affect modern productivity). So it is vulner-

able to the critique—discussed in Nunn (2014) and Voth (2021)—that one may expect any

temporary shock to fundamentals to cause a persistent geographic impact due to the logic

of agglomeration and endogenous spatial lock-in. Our results can be used to assess such

concerns by benchmarking the amount of spatial persistence and path dependence one may

expect even in the absence of persistent fundamentals.

Second, on the theory side, our goal has been to build a bridge between two prominent

strands of dynamic spatial modeling that have flourished in the last thirty years. An ear-

lier wave built the foundations of economists’ understanding of path-dependent geographic

settings by combining agglomeration forces with forward-looking behavior.2 However, it

typically did so via deliberately small-scale and simplified models that were designed to

maximize qualitative insights.

A more recent tradition has instead pioneered the study of models that are sufficiently

flexible as to admit calibration to high-dimensional empirical settings with realistic geogra-

phies.3 However, the ability to incorporate both forward-looking agents and local economies

of density has so far lagged behind. Unsurprisingly, therefore, this literature has not yet

focused on the study of path dependence that animates our paper. Our new theoretical

results are designed to make progress towards this goal. For example, we build on Desmet

et al. (2018) by adding forward-looking mechanisms, general migration frictions, and (as

concerns the multiplicity of steady-states) an understanding of global necessity and not just

sufficiency.4 We build on Caliendo et al. (2019)’s model of forward-looking migration behav-

ior by deriving conditions for uniqueness, persistence, and the multiplicity of steady-states,

and do so under the more general environment in which (both static and dynamic) agglom-

eration externalities are present. And we provide a complementary result about persistence

to that in Kleinman et al. (2021) by studying the full non-linear properties of our model

(rather than a linearized version of it). By providing a tractable dynamic framework able

2Canonical examples of this approach—albeit often with a focus on the isomorphic problem of agglom-
eration across sectors rather than space—include Krugman (1991), Matsuyama (1991), Fukao & Benabou
(1993), Rauch (1993), Fujita et al. (1999), Puga (1999), Herrendorf et al. (2000), Baldwin (2001), Ottaviano
(2001), Ottaviano et al. (2002), Robert-Nicoud (2005), and Baldwin et al. (2011).

3Dynamic examples include Artuç et al. (2010), Desmet & Rossi-Hansberg (2014), Desmet et al. (2018),
Caliendo et al. (2019), Nagy (forthcoming), Kleinman et al. (2021). Static frameworks featuring realistic
geographies include Roback (1982), Glaeser (2008), Allen & Arkolakis (2014), and Ahlfeldt et al. (2015); see
Redding & Rossi-Hansberg (2017) for a review.

4Indeed, apart from a difference in the assumed depreciation schedule, a special case of our model with
myopic agents, restricted migration costs and no historical amenity spillovers is formally isomorphic to the
framework of Desmet et al. (2018).
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to incorporate rich geographic heterogeneity and characterizing its properties, we hope to

facilitate the study of the role of history in shaping the evolution of the spatial economy.5

Due to the limits of data in our historical context, our analysis omits some features that

have proved important in this prior work. These include the spatial diffusion of knowledge in

Desmet et al. (2018), the input-output structure of Caliendo et al. (2019), and the presence

of local landlords who accumulate capital in Kleinman et al. (2021). However, our new

result about uniqueness in general dynamic spatial models (Theorem 1) may prove useful

for applications that feature these extensions. Doing so offers the prospect of quantifying

additional mechanisms that have featured in the earlier tradition of economic geography

modeling—see, for example, Baldwin & Forslid (2000) on innovation, Krugman & Venables

(1995) on input-output loops, and Baldwin (1999) on capital, as well as the synthesis in

Baldwin et al. (2011).

2 A model of spatial persistence and path dependence

In this section we develop a dynamic economic geography framework that is amenable to the

empirical study of geographic path dependence. A large set of regions possess arbitrary, time-

varying fundamentals in terms of productivity and amenities. They interact via costly trade

in goods and costly but forward-looking migration. Crucially, production and locational

amenities both potentially involve contemporary and historical spillovers—the forces behind

both long persistence and path dependence.

2.1 Setup

There are i ∈ {1, ..., N} ≡ N locations and time is discrete, infinite, and indexed by t ∈
{0, 1, ....} ≡ T . The world is inhabited by many forward-looking dynastic families, where

individuals in a family live for two periods. In the first period (“childhood”), a child is born

into each family, living where her parent lives and consuming what her parent consumes. At

the beginning of the second period (“adulthood”), this former child (now an adult) realizes

her own idiosyncratic locational preferences and chooses where to live, taking into account

not only her own benefit of living in a location but also the expected benefit of all future

generations of her family. Once she has made her location choice, she supplies a unit of labor

inelastically to produce, she consumes, and she gives birth to a child.

5Recent work applying our framework includes the study of how trading patterns evolved in Brazil (Pel-
legrina et al. 2021), where urbanization occurred in colonial Latin America (Ellingsen 2021), and how South
Korea industrialized (Choi & Shim 2021).
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Let Lit denote the number of workers (adults) residing in location i at time t, where the

total number of workers
∑N

i=1 Lit = L̄, is normalized to a constant in each period t.6

2.1.1 Production

Each location i is capable of producing a unique good—the Armington (1969) assumption.

A continuum of firms (indexed by ω) in location i produce this homogeneous good un-

der perfectly competitive conditions with the constant returns-to-scale production function

qit(ω) = Aitlit(ω), where labor lit(ω) is the only production input, and hence
´
lit(ω)dω = Lit.

The productivity level for the location is given by

Ait = ĀitL
α1
it L

α2
it−1, (1)

where Āit is an exogenous (but unrestricted) component of this location’s productivity in

year t.7 Importantly, the two additional components of a location’s productivity in equation

(1) depend on the number of workers in that location both in the current period, Lit, and

in the previous period, Lit−1. We assume that firms take these aggregate labor quantities as

given. Hence the parameter α1 governs the strength of any potential (positive or negative)

contemporaneous agglomeration spillovers working through the size of local production. This

is a simple way of capturing Marshallian externalities, external economies of scale, knowledge

transfers, thick market effects in output or input markets, and the like, and is standard in

many approaches to modeling spatial economies (Redding & Rossi-Hansberg 2017), albeit

typically in static models that would combine the effects of Lit and Lit−1.

The parameter α2, on the other hand, governs the strength of potential historical agglom-

eration spillovers.8 This allows for the possibility that two cities with equal fundamentals

Āit and sizes Lit today might feature different productivity levels Ait today because they

had differing sizes Lit−1 in the past. There are many potential reasons that one might ex-

pect α2 > 0, and we describe two such sets of microfoundations briefly here (with complete

derivations in Appendix B.1).

Consider first the potential persistence of local knowledge. In particular, we present a

model based on Deneckere & Judd (1992), where firms can incur a fixed cost to develop a new

variety, for which they earn monopolistic profits for a single period. In the subsequent period,

the blueprint for the product becomes common knowledge so that the variety is produced

6Our model economy exhibits a form of scale-invariance that means that, for the purposes of our analysis
here, the total number of workers in any time period is irrelevant for the distribution of economic activity.

7In the initial period t = 0, we set Ai0 = Āi0L
α1
i0 , as there is no preceding t = −1 period.

8We consider historical spillovers that take place with a lag of one time period but the tools developed in
this paper could be applied to a richer sequence of potential spillovers.
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under perfect competition, and we assume the product becomes obsolete two periods after its

creation. As in Krugman (1980), the equilibrium number of new varieties will be proportional

to the contemporaneous local population. Given consumers’ love of variety, new varieties act

isomorphically to an increase in the productivity of the single Armington product, resulting

in the precise form of equation (1) with α1 ≡ χ
ρ−1

and α2 ≡ 1−χ
ρ−1

, where χ is the expenditure

share on all new varieties and ρ > 1 is the elasticity of substitution across individual varieties.

Second, consider the potential for durable investments in local productivity. In particular,

we present a model based on Desmet & Rossi-Hansberg (2014), in which firms hire workers

both to produce and to innovate, and where innovation increases each firm’s own productiv-

ity contemporaneously and increases all firms’ productivity levels in the subsequent period.

If firms earn zero profits in equilibrium due to competitive bidding over a fixed factor (e.g.

land), then, as in Desmet & Rossi-Hansberg (2014), the dynamic problem of the firm sim-

plifies to a sequence of static profit-maximizing problems. With Cobb-Douglas production

functions, equilibrium productivity can be written as in equation (1) with α1 ≡ γ1
ξ
− (1− µ),

and α2 ≡ δ̃ γ1
ξ

, where γ1 governs the decreasing returns of innovation in productivity, ξ gov-

erns the decreasing returns of labor in innovation, δ̃ is the depreciation of investment, and µ

is the share of labor in the production function.

Of course, there are surely many sets of microfoundations that could generate the pro-

ductivity spillover features assumed in equation (1). In what follows, we characterize the

properties of the model and estimate the strength of the spillovers without taking a stand

on the particular source of these effects.

2.1.2 Consumption

An adult and her child consume with the same preferences, with a constant (but irrelevant)

fraction allocated to the child. They have constant elasticity of substitution (CES) prefer-

ences, with elasticity σ > 1, across the differentiated goods that each location can produce.

Letting wit denote the equilibrium nominal wage, and letting Pit be the price index (solved

for below), the deterministic component of welfare in a period t—that is, welfare up to an

idiosyncratic shock that we introduce below—of any adult residing in location i at time t is

given by

Wit ≡ uit
wit
Pit

, (2)

where the component uit refers to a location-specific amenity value that is given by

uit = ūitL
β1
it L

β2
it−1. (3)

8



The term ūit allows for flexible exogenous amenity offerings in any location and time pe-

riod.9 Endogenous amenities work analogously to the production externality terms intro-

duced above, with the parameters β1 and β2 here capturing the potential for the presence

of other adults in a location to directly affect (either positively or negatively, depending on

the sign of β1 and β2) the utility of any given resident. We similarly assume that consumers

take these terms as given when making decisions.

As is well understood, a natural source of a negative value for β1 in a model such as

this one is the possibility of local congestion forces that are not directly modeled here; for

example, if non-tradable goods (such as housing and land) are in fixed supply locally and

are demanded with fixed expenditure shares then −β1 would equal the share of expenditure

spent on such goods. Such effects would work contemporaneously, so they would govern β1.

Similarly to the case of productivity effects governed by α2, the parameter β2 stands in

for phenomena through which the historical population Lit−1 affects the utility of residents in

year t directly (that is, other than through productivity, wages, prices, or current population

levels). Again it seems potentially important to allow for such effects given the likelihood

that previous generations of residents may leave a durable impact, positive or negative, on

their former locations of residence. Positive impacts could include the construction of infras-

tructure (e.g. housing, parks, or sewers), and negative impacts could include environmental

damage or resource depletion.

As with productivity, we emphasize that there may be other theoretical rationales for

the amenity spillovers assumed in equation (3). In terms of what follows, there is no need

to emphasize any one particular microfoundation. But it is again helpful to see an example.

To that end, consider (with details in Appendix B.2), a model where agents consume both a

tradable good and local housing, and each unit of land is owned by a real estate developer who

bids for the rights to develop the land and then chooses the amount of housing to construct.

To build housing, the developer combines local labor and the (depreciated) housing stock

from the previous period. We assume the bidding process ensures developers earn zero

profits, so as in Desmet & Rossi-Hansberg (2014) the dynamic problem of how much housing

to construct simplifies into a series of static profit maximizing decisions. In equilibrium,

the higher the contemporaneous population, the lower the utility of local residents (as the

residents each consume less housing), whereas the higher the population in the previous

period, the higher the utility of local residents (as more workers in the previous period

results in a greater housing stock today). In particular, if production and utility functions

are Cobb-Douglas (with µ the share of old housing in production and 1 − λ the share of

housing in expenditure) this model will be isomorphic to equation (3), with β1 = −µ1−λ
λ
< 0

9As with the case of productivity Ai0, we set ui0 = ūi0L
β1

i0 in the initial period t = 0.
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and β2 = ρµ1−λ
λ
> 0, where ρ is the depreciation rate of the housing stock.

2.1.3 Trade

Bilateral trade from location i to location j incurs an exogenous iceberg trade cost, τijt ≥ 1

(where τijt = 1 corresponds to frictionless trade). Given this, bilateral trade flow expendi-

tures Xijt take on the well-known gravity form given by

Xijt = τ 1−σ
ijt

(
wit
Ait

)1−σ

P σ−1
jt wjtLjt, (4)

where

Pit ≡

(
N∑
k=1

(
τkit

wkt
Akt

)1−σ
) 1

1−σ

(5)

is the CES price index referred to above.

For the empirical analysis below, it is convenient to write equation (4) as:

Xijt = τ−θijt ×
(
Yit/Y

W
)

P1−σ
it

× Yjt

P 1−σ
jt

, (6)

where

Pit ≡
(
wit
Ait

)−1(
Yit
Y W

) 1
1−σ

, (7)

and Yit ≡ witLit, and Y W is total world income (which we normalize to one in what follows).

In the terminology of the gravity trade literature (see e.g. Anderson & Van Wincoop 2003),

(the inverse of) Pit captures the outward trade market access of location i and (the inverse

of) Pjt captures the inward trade market access of location j.

2.1.4 Migration

We now turn to the decision of agents regarding how to migrate between different locations.

This has three ingredients. First, similarly to the case of costly trade introduced above, we

assume that individuals migrating from i to j in period t incur additive migration costs µ̃ijt ≥
0; second, we also allow for idiosyncratic unobserved heterogeneity in how each child will value

living in each location j in adulthood, by assuming that each child has idiosyncratic extreme

value (Gumbel) distributed preferences over potential destinations with shape parameter

θ ≥ 0 (and location parameters normalized to one without loss); third, we assume that

individuals discount the welfare of future generations of family members with a discount

rate δ ≥ 0.
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To study such a setting, we first characterize the value an adult derives from residing in

location i at time t, which we refer to as Ṽit. This value Ṽit has two parts: first, as described

above, this adult enjoys her own consumption and amenity value of residing in the location;

second, she also values the expected welfare of all future generations of her family, taking

into account the fact that those descendants will be making their own optimal migration

decisions, yielding the following equation for any adult located in i at time t:

Ṽit = logWit + δEt
[
max
j

{
Ṽj,t+1 − µ̃ij,t+1 + εijt+1

}]
.

Here, the expectation is taken over the possible realizations of this adult’s child’s idiosyncratic

preferences {εijt+1} that are unknown at the time the adult makes her own migration decision

(but which will be realized by the child when she makes her own migration decision next

period) and δ ≥ 0 captures the discount that this parent applies to her child’s welfare relative

to her own. Given the assumed extreme value distribution, this expectation has a convenient

analytical expression, allowing us to write:

Vit = WitΠ
δ
i,t+1, (8)

where we refer to Vit ≡ exp
(
Ṽit

)
as the present discounted value (PDV) of a family whose

living adult member at time t resides in location i, µik,t+1 ≡ exp (µ̃ik,t+1) ≥ 1 is the migration

cost and Πit ≡
(∑N

k=1 (Vkt/µikt)
θ
) 1
θ

summarizes the appeal of migration options for those

who are born in period t− 1 in location i. Equation (8) characterizes the present discounted

value Vit an adult receives from residing in a location i in time t, accounting for both her

own period payoff and her dynastic considerations of future generations of her family.

We now consider the migration decision of a child. Recall from the discussion of timing

above that Lit−1 adults reside in location i at time t−1, and they have one child each. Those

children choose at the beginning of period t—as they pass into adulthood––where they want

to live as adults, accounting for the (deterministic) value they receive from that location,

the migration costs they incur, and their own idiosyncratic preferences. Letting the vector

of such idiosyncratic taste differences (one for each location) be denoted by ~ε, the actual

period payoff of a child who receives the draw ~ε while living in location i at time t− 1 and

who chooses to move to location j as an adult is:

Ṽijt (~ε) ≡ Ṽjt − µ̃ij,t + εijt, (9)
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Hence, any new adult chooses her location as follows:

max
j
Ṽijt (~ε) = max

j

(
Ṽjt − µ̃ij,t + εijt

)
.

Given the assumed extreme value distribution, the number of children in location i at time

t− 1 who choose to move to location j at time t, Lijt, is then given by:

Lijt = µ−θijtΠ
−θ
it Lit−1V

θ
jt. (10)

Equation (10) says that there will be greater migration toward destination locations j with

higher dynamic value Vjt and low bilateral migration costs µijt, and coming from origin

locations i that either have a lot of residents Lit−1 or poor outside options Πit.

Finally, for the empirical analysis below, it is convenient to write equation (10) as:

Lijt = µ−θijt ×
Lit−1

Πθ
it

× Ljt/L̄

Λ−θjt
, (11)

where

Λit ≡ Vit

(
Lit
L̄

)− 1
θ

. (12)

As with the flow of goods described above, Πit captures the outward migration market access

from i and the (inverse of) Λjt captures the inward migration market access to j.

2.2 Dynamic equilibrium

An equilibrium in this dynamic economy is a sequence of values of (finite) prices and

(strictly positive) allocations such that goods and factor markets clear in all periods.10

More formally, for any strictly positive initial population vector {Li0} and geography vector{
Āit, ūit, τijt, µijt

}
, an equilibrium is a vector of endogenous variables {Lit, wit,Wit,Πit, Vit}

such that, for all locations i and time periods t, we have:

1. Total sales are equal to payments to labor: That is, a location’s income is equal to the

value of all locations’ purchases from it, or witLit =
∑

j Xijt. Using equation (4) this

10Throughout, we confine attention to equilibria where all locations are inhabited, as (i) these are the
empirically relevant types of equilibria at our geographic scale of analysis; and (ii) in the presence of produc-
tivity and/or amenity spillovers, from equations (1) and (3), an uninhabited location will (trivially) remain
uninhabited forever.
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can be written as

wσitL
1−α1(σ−1)
it =

∑
j

KijtL
β1(σ−1)
jt W 1−σ

jt wσjtLjt, (13)

with Kijt ≡
(

τijt

ĀitL
α2
it−1ūjtL

β2
jt−1

)1−σ

defined as a collection of terms that are either exoge-

nous, or predetermined from the perspective of period t.

2. Trade is balanced: That is, a location’s income is fully spent on goods from all locations,

or witLit =
∑

j Xjit. Using equation (4) this can be written as

w1−σ
it L

β1(1−σ)
it W σ−1

it =
∑
j

KjitL
α1(σ−1)
jt w1−σ

jt . (14)

3. A location’s population is equal to the population arriving in that location: That is,

Lit =
∑

j Ljit. From equation (10) this implies

LitV
−θ
it =

∑
j

µ−θjitΠ
−θ
jt Ljt−1. (15)

4. A location’s population in the previous period is equal to the number of people exiting

that location: That is, Lit−1 =
∑

j Lijt. From equation (10) this can be written as

Lit−1 =
∑
j

µ−θijtΠ
−θ
it Lit−1V

θ
jt,

which can then be written more compactly as

Πθ
it ≡

∑
j

µ−θijtV
θ
jt. (16)

5. Agents are forward-looking : That is, the payoffs of residing in a location depend both

on the period payoffs and the present discounted value of future generations. From

equation (8) this can be written as:

Vit = WitΠ
δ
i,t+1. (17)

Summarizing, the dynamic equilibrium can be represented as the system of 5×N equations

(in equations 13-17) in 5×N unknowns, {Lit, wit,Wit,Πit, Vit} for all countably infinite time

periods t ∈ {1, ..., }.
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This system of equations (13)-(17) is a special case of the following more general dynamic

system of nonlinear equations:

xi,h,t =
N∑
j=1

Kij,h,t

H∏
h′=1

(xj,h′,t)
ε
j,t

h,h′ (xj,h′,t+1)
ε
j,t+1

h,h′ (xi,h′,t+1)
εi,t+1

h,h′ (xj,h′,t−1)
ε
j,t−1
h,h′ (xi,h′,t−1)

εi,t−1
h,h′ ,

(18)

In this system, the values of {xi,h,t}i,h,t ∈ RN×H
++ × .... are unknown, whereas those of

{Kij,h,t}ij,h,t ∈ K ⊆ RN2×H
+ × .... and

{
εj,th,h′ , ε

j,t+1
h,h′ , ε

i,t+1
h,h′ , ε

j,t−1
h,h′ , ε

i,t−1
h,h′

}
h,h′
∈ R5(H×H) are fi-

nite and given. Similarly, for some subset H̃ ⊆ H, the initial conditions {xi,h,t}i∈N ,h∈H̃,t=0 ∈
RN×H̃

++ are finite and given, where H̃ is the dimension of H̃. One can interpret equation

(18) as describing a dynamic model with N “locations” (indexed by i and j) and H different

“types” of co-determined endogenous outcomes (indexed by h). Economic interactions (po-

tentially) take place within the same location but across adjacent time periods (in which case

the H ×H matrix of cross-type elasticities is given by Ei,t−1 ≡
{
εi,t−1h,h′

}
h,h′

for interactions

between t and t−1 and by Ei,t+1 for those between t and t+1), within the same time period

but across different locations (denoted by the elasticities Ej,t), and across both different

locations and adjacent time periods (with elasticities denoted by Ej,t−1 and Ej,t+1). In each

case, the elasticities in the E matrices govern the strength of dynamic interactions but are

themselves time-invariant.11

The analysis of such a system can prove challenging given both the large state space and

the forward-looking dynamic behavior. Indeed, we believe the following result is the first to

offer a characterization of equilibrium properties of such a forward-looking non-linear general

equilibrium quantitative spatial model.

We focus on bounded equilibria, for which the solution xi,h,t to equation (18) has the

property that there exists a set of finite strictly positive scalars {mh,t,Mh,t}h,t such that for

all h ∈ H and t ∈ T we have 0 < mh,t ≤ xi,h,t ≤ Mh,t < ∞ for all i ∈ N . The following

Theorem establishes sufficient conditions for the uniqueness of a bounded equilibrium that

satisfies equation (18):

Theorem 1. Consider the inhomogeneous linear second-order difference equation,

(∣∣Ei,t−1∣∣+
∣∣Ej,t−1∣∣)µt−1 −

(
I−

∣∣Ej,t
∣∣)µt +

(∣∣Ej,t+1
∣∣+
∣∣Ei,t+1

∣∣)µt+1 = bt, (19)

11The notation used here for the 5H2 elasticities
{
εj,th,h′ , ε

j,t+1
h,h′ , ε

i,t+1
h,h′ , ε

j,t−1
h,h′ , ε

i,t−1
h,h′

}
h,h′

is such that the

superscripts denote the nature of the interaction across locations (where “i” denotes “within-location”, and
“j” denotes “cross-location”) and time (where “t− 1” denotes “with the previous period”, “t” denotes “within
the same period”, and “t + 1” denotes “with the next period”), and the subscripts denote the elasticity of
variable type h with respect to type h′.
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where: the absolute value operator |·| is taken element-wise; I denotes the H × H identity

matrix; the H×H matrices Ei,t−1, Ej,t−1, Ej,t, Ej,t+1, and Ei,t+1 are given and correspond

to the values defined in equation (18); the sequence bt is given for all t ∈ T ; the initial

conditions µh̃,0 = 0 for all h̃ ∈ H̃; and µt is unknown for all t > 0 and for all h̃ /∈ H̃
at t = 0. Then there is at most one bounded equilibrium solution to equation (18) if the

following two conditions hold:

(a) In the case where bt = 0 for all t ∈ T , the unique solution to (19) is µt = 0 for all

t ∈ T .

(b) In the case where bt ≥ 0 (and where at least one element of the inequality is strict)

for all t ∈ T , there exists no solution to (19) of the form µt ≥ 0 for all t ∈ T .

Proof. See Online Appendix A.1.

This result provides a sufficient condition (concerning both the values of elasticities E and

the set of variable types h̃ ∈ H̃ whose initial conditions are given) that ensures the unique-

ness of a bounded equilibrium in any model that can be written in the form of equation (18).

Importantly, this condition is sufficient irrespective of the values taken by the sequence of

exogenous fundamentals {Kij,h,t}ij,h,t and by the initial conditions {xi,h,t}h∈H̃,i∈N ,t=0. Ap-

pendix Remark 1 describes a procedure that allows one to check whether conditions (a) and

(b) of Theorem 1 are satisfied in any given application.12

The proof of this result is based on following insight. Letting µt denote the log ratio of

the maximum and minimum (taken across all locations i ∈ N for a given h ∈ H and t ∈ T )

between any two candidate solutions to the N ×H × T nonlinear dynamic system (18), we

first show that µt is bounded above by the solution to the H × T linear dynamic system in

equation (19) (and from below by zero, by construction). Because such a linear system has

been previously characterized (see, e.g., Theorem 8.3 of Gohberg et al. 2005), we can provide

conditions under which its only (weakly) positive solution is µt = 0. Under such conditions

the upper and lower bounds coincide, and the two candidate solutions must be equal.

As mentioned above, our model’s dynamic system (13)-(17) is an example of one that

can be cast in the form in equation (18), allowing the application of Theorem 1. Before

doing so, we simplify the system from one with H = 5 types of endogenous variables to

one with H = 3. A first simplification follows from using equation (17) to substitute for

Wit. A second follows if we assume that trade costs τijt are symmetric, as they will be in

our empirical application below, in which case (13) and (14) can be combined into a single

12The procedure is based on the properties of the corresponding quadratic eigenvalue problem; see Gohberg
et al. (2005) and Tisseur & Meerbergen (2001). Sims (2002) applies closely related techniques to characterize
the properties of linear rational expectations models. The distinctive feature of Theorem 1 is its use of such
techniques to provide sufficient conditions for uniqueness in non-linear forward-looking economies.
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equation.13 Together, this reduces the equilibrium to a set of 3 × N equations for 3 × N

unknowns {Lit, Vit,Πit} in each time period t ∈ {1, ....}. Then a straightforward change of

variables such that [lnxi,1,t, lnxi,2,t, lnxi,3,t]
T = Γ [lnLit, lnWit, ln Πit]

T , where Γ is a 3-by-3

matrix depending on {α1, β1, σ, θ},14 allows us to apply Theorem 1 to yield the following

Corollary:

Corollary 1. Suppose that the matrices of elasticities Ej,t, Ej,t+1, Ei,t+1, Ej,t−1, and Ei,t−1

described in Theorem 1 are as follows:

Ej,t =

σ̃ (1 + α1σ + β1 (σ − 1)) (1− σ) σ̃ 0

0 θ 0

0 0 −θ

Γ−1,

Ej,t+1 =

0 0 0

0 0 δθ

0 0 0

Γ−1, Ei,t+1 =

0 0 0

0 0 0

0 0 δθ

Γ−1,

Ej,t−1 =

σ̃ (α2σ + β2 (σ − 1)) 0 0

0 0 0

1 0 0

Γ−1, Ei,t−1 =

σ̃ (α2 (σ − 1) + β2σ) 0 0

0 0 0

0 0 0

Γ−1,

where σ̃ ≡ (σ − 1) / (2σ − 1). If these matrices satisfy conditions (a) and (b) of Theorem 1,

then for any initial population {Li0} and geography {Āit > 0, ūit > 0, τijt = τjit, µijt > 0},
there exists at most one bounded equilibrium in the model described by equations (13)-(17).

Proof. See Online Appendix A.2.

As described above, conditions (a) and (b) of Theorem 1 are straightforward to verify

in any application. Panel (a) of Figure 1 illustrates the results of doing so for the case

of our model (and hence as an illustration of Corollary 1) across a range of values for the

contemporaneous spillover elasticities α1 and β1, while setting the values of σ, θ, δ, α2, and

β2 to those that we use in our empirical calculations below. Despite the added complexity of

the forward-looking behavior, it is reassuring to note that the standard economic intuition

continues to hold: the sufficient condition for uniqueness will be satisfied whenever α1 and β1

are sufficiently small. Indeed, at the values used here it turns out that uniqueness is assured

13This follows from the fact that when trade costs are symmetric outward and inward goods market access
Pit and Pit are equal up to scale; see Anderson & Van Wincoop (2003) and Allen & Arkolakis (2014).

14In particular, Γ ≡


(
σ−1
2σ−1 (1− α1 (σ − 1)− β1σ)

)
σ−1
2σ−1σ 0

0 0 θ
1 −θ 0

 .
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by the simple condition that α1+β1 <
1
θ
—that is, the sum of contemporaneous agglomeration

forces must simply be greater than dispersion forces. However, the sufficient condition for

uniqueness can fail (and hence the possibility of expectations-based multiplicity may arise) if

the strength of forward-looking behavior is particularly strong. Similarly, while in principle it

is possible for the strength of historical spillovers α2 and β2 to affect the sufficient conditions

for uniqueness, such a scenario arises only under stronger forward-looking behavior. Finally,

we note that in the special case where there is no forward-looking behavior (i.e. δ = 0), the

sufficient condition in Corollary 1 is satisfied whenever the spectral radius of |Ej,t| is less

than one, which corresponds to the condition that is familiar from static spatial equilibrium

models (see Allen et al. 2021). We denote this condition by ρ (|Ej,t|) < 1, where ρ(·) denotes

the spectral radius operator, in what follows.

To provide some intuition for the dynamic system, algebraic manipulations of equations

(13)-(17) when trade costs are symmetric imply that the equilibrium distribution of popula-

tion in any location and time period can be written as

γ lnLit = Ct + σ ln ūit + (σ − 1) ln Āit − (2σ − 1) lnPit − σ ln Λit

+ σδ ln Πi,t+1 + (α2 (σ − 1) + β2σ) lnLi,t−1, (20)

where γ ≡ 1 + σ
θ
− (α1 (σ − 1) + β1σ) and Ct is a constant that ensures that

∑N
i=1 Lit = L.

Equation (20) has four implications. First, as long as γ > 0 (which corresponds to the case

of our empirical estimates below), a greater density of residents can be found in any location

with high productivity Āit, high amenities ūit, high inward migration access (low Λit), high

access to imported goods (low Pit), higher present discounted value for future generations

(high Πi,t+1), and—if α2 (σ − 1) + β2σ > 0, so that historical spillovers are positive—with

greater population density in the previous period. Second, the elasticities of the population

to these characteristics are governed by the strength of γ−1, where greater contemporaneous

spillover elasticities α1 and β1 result in larger population responses. Third, history—i.e.

the distribution of the population in the previous period—only affects the current popula-

tion through the inward market access terms (Λit and Pit) and through the direct impact

on productivities and amenities from the historical spillover elasticities α2 and β2. Fourth,

the future—i.e. future productivities, amenities, and distributions of population—only af-

fects the contemporaneous population through the next period’s outward migration access

(Πi,t+1). While the first two determinants of population density in equation (20), Āit and

ūit, are exogenous in our model, the latter four determinants, Λit, Pit, Πi,t+1,and Li,t−1 are

endogenous and are determined simultaneously through interactions with the endogenous

features in all other locations. It is the self-reinforcing potential of these interactions, both
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over time and across space, that leads to the potentially rich dynamics that we explore below.

2.3 Persistence and path dependence

We now turn to a characterization of the dynamic properties of the model, namely the

persistence of shocks to the economy and the possibility of multiple steady-states (i.e. the

potential for path dependence).

Persistence

Consider first the question of persistence: how long does a temporary shock to the economy

take to dissipate? Here (and only here) we consider the special case of our model where

δ = 0, i.e. where agents do not care about the welfare of future generations. Even in the

absence of forward-looking behavior, it turns out that there is the possibility of extreme

persistence in the economy. We begin by defining χx,t ≡ maxi xi,t/xi,t−1

mini xi,t/xi,t−1
to be the ratio of the

maximum to minimum change (from t− 1 to t) in any variable xi,t across all locations. Note

that χx,t ≥ 1 and is equal to one if and only if xi,t ∝ xi,t−1 for all i, i.e. the economy is on a

balanced growth path (or, in our case where aggregate population is fixed, a steady-state).

As such, it provides a convenient economy-wide measure of how far xi,t is from a steady-state.

We can then define the economy-wide persistence of variable xi,t as the effect of χx,t−1 on

χx,t—that is, how much deviations from the steady-state in period t − 1 affect deviations

from the steady-state in period t. The following proposition bounds the persistence of all

endogenous outcomes in the model in this manner:

Proposition 1. Consider any initial population {Li0} and time-invariant geography {Āi >
0, ūi > 0, τij = τji, µij > 0}. Suppose that δ = 0 and ρ (|Ej,t|) < 1, where Ej,t is defined

in Corollary 1, so that the dynamic equilibrium is unique. Then the following relationship

holds: lnχL,t

lnχV,t

lnχΠ,t

 ≤ ∣∣Γ−1
∣∣ (I− Ej,t

)−1
G |Γ|

lnχL,t−1

lnχV,t−1

lnχΠ,t−1

 , (21)

where G is a 3-by-3 matrix whose first two rows are strictly positive (with values that depend

on the parameters α1, α2, β1, β2, σ and θ, as fully defined in Section A.3) and whose second

row consists entirely of zeroes.

Proof. See Section A.3.

Proposition 1 provides an upper bound on how much the endogenous variables Lit, Vit and

Πit change from period t−1 to period t that depends on how much they changed from period
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t−2 to period t−1, holding constant the underlying geography. The proposition states that

the closer the spillover parameters are to the boundary at which uniqueness can no longer be

guaranteed, the less stringent the upper bound places on the rate of persistence. To see this,

note that as the spectral radius ρ (|Ej,t|) approaches one from below, the largest eigenvalue

of (I− |Ej,t|)−1
—and hence also the largest eigenvalue of

∣∣Γ−1
∣∣ (I− |Ej,t|)−1

G |Γ|, given

the properties of G stated in the Proposition—approaches infinity.15

Path dependence

So far we have described the dynamic transition paths of this spatial economy. We now

discuss the steady-state(s) to which these paths may converge. Intuitively, if local agglom-

eration economies are strong enough then there could be multiple allocations at which the

economy would be in steady-state. Agents who come to reside in a location could find it

optimal, on average, to stay there; and yet the same could simultaneously be true for another

location, thanks to the reinforcing logic of local positive spillovers.

To evaluate this possibility we consider a version of the above economy but for which the

potentially time-varying fundamentals
{
Āit
}

and {ūit}, as well as the trade {τijt} and migra-

tion {µijt} costs, are constant over time at the values
{
Āi, ūi, τij, µij

}
. The steady-states of

our economy will therefore be a set of time-invariant endogenous variables that we denote by

{Li, wi,Wi,Πi, Vi}.16 The following result provides a sufficient condition for existence and

uniqueness of the steady-state of this economy (for arbitrary geographies with symmetric

trade and migration costs).17 It also shows how this is a maximal domain sufficient condi-

tion—the weakest condition one could impose whose result would be true for any geographic

fundamentals.

Proposition 2. For any time-invariant geography
{
Āi > 0, ūi > 0, τij = τji, µij = µji

}
, there

exists a unique steady-state equilibrium if:

ρ (B) < 1,

15This can be seen from a simple eigen-decomposition (I− |Ej,t|)−1
= V′ΛV where Λ is a diagonal matrix

whose elements are the eigenvalues (including 1
1−ρ(|Ej,t|) , which approaches infinity as ρ (|Ej,t|) approaches

one from below) and V is a 3 × 3 matrix of the associated eigenvectors. Note that because Ej,t is strictly

positive and hence ρ (Ej,t) > 0, the largest eigenvalue of (I− |Ej,t|)−1
always exceeds unity, which indicates

that long-lived persistence can never be ruled out.
16Note that while population levels at each location Li are constant in steady-state, and hence net migration

flows are zero, gross migration flows are still positive in a steady-state equilibrium due to the churn induced
by the idiosyncratic locational preferences in equation (9).

17As with the case of trade costs, imposing the symmetry of migration costs both matches our empirical
application and reduces the dimensionality of the system of non-linear equations governing the steady state
distribution of economic activity, permitting a tighter characterization of its properties.
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where

B ≡


∣∣∣1−σθ−βss+αssσ+βssσ+ 1

θ
σ
θ

+1−αss(σ−1)−βssσ

∣∣∣ ∣∣∣∣ (1+δ)(αss+1)(σ−1
θ )

σ
θ

+1−αss(σ−1)−βssσ

∣∣∣∣∣∣∣∣ (2σ−1)/(σ−1)

(σθ+1−αss(σ−1)−βssσ)

∣∣∣∣ ∣∣∣1−αss(σ−1)−βssσ−δ σθ
σ
θ

+1−αss(σ−1)−βssσ

∣∣∣


and αss ≡ α1 + α2 and βss ≡ β1 + β2.

Moreover, if ρ (B) > 1, then there exist many geographies for which there are multiple

steady-states at each geography.18

Proof. See Section A.4.

In the absence of forward-looking behavior (i.e. at δ = 0), the condition for uniqueness

of the steady-state in Proposition 2 is identical to that for uniqueness of transition paths in

Corollary 1, with one modification: the condition on steady-states depends on the size of

total (that is, contemporaneous plus historical) spillovers αss ≡ α1 + α2 and βss ≡ β1 + β2

rather than just the contemporaneous spillovers α1 and β1. With forward-looking behavior

(and at the values for δ, σ, and θ that we use below), as illustrated in Panel (b) of Figure

1, the region of (αss, βss) defined by ρ (B) < 1 in Proposition 2 is very similar to that

of (α1, β1) defined by Corollary 1. As a result, the basic intuition remains the same: as

long as the total strength of the combined productivity and amenity (contemporaneous plus

historical) spillovers is sufficiently small, there will be a unique steady-state. The second part

of Proposition 2 demonstrates that the sufficient condition for uniqueness of steady-states is

indeed necessary for certain geographies. Indeed, the proof of this proposition provides (for

any given value of B such that ρ (B) > 1) a continuum of example geographies under which

multiple steady-states arise.

Associated with each steady-state is a basin of attraction: a set of values of the initial

population distribution {Li0} for which the economy will converge to the steady-state in

question. When there are multiple steady-states, and hence multiple basins of attraction,

the eventual steady-state equilibrium of the economy will generically depend on its initial

population distribution. Such a situation offers the potential for path dependence: where

historical events that determine {Li0} can have permanent effects on the economy’s outcomes

since they select the basin of attraction in which populations are distributed at time 0, and

hence the eventual steady-state that is reached. Since the dynamic equilibria described in

equations (13)-(17) feature a historical dependence on the state variable {Lit} with only

one lag, this means that from the perspective of any date t the “history” of the system (all

exogenous and endogenous outcomes in the past) is fully characterized by {Li,t−1}. Hence,

observing the phenomenon that some event had a path-dependent impact hinges on whether

18If ρ (B) = 1, there exists at most one steady-state.
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the event moved {Li,t−1} across the boundary from one basin of attraction to another. We

explore this feature in our counterfactual simulations in Section 4.

Combining Corollary 1 and Proposition 2, we see that the historical spillover parame-

ters α2 and β2 play an important role in the study of path-dependent economies. Corol-

lary 1 shows that when the contemporaneous spillover parameters α1 and β1 are low then

the (bounded) dynamic equilibrium will be unique (as long as agents are not too forward-

looking). However, Proposition 2 states that when α1 + α2 and β1 + β2 are high then

steady-states are likely to be multiple. In this range of parameters (that is, with relatively

low α1 and β1, relatively high α2 and β2, and δ not too large) path dependence can occur

and yet be straightforward to study since the complications (for estimation, computation,

and interpretation of counterfactuals) of equilibrium indeterminacy do not arise.

2.4 A three-location example

To see the implications of Propositions 1 and 2 more concretely, consider a simple econ-

omy with three locations. Suppose that these locations have identical and time-invariant

fundamentals
{
Āit, ūit, τijt, µijt

}
and symmetric trade and migration costs across locations;

further, we use values for σ and θ that are in the empirically relevant range, and set aside

amenity spillovers (i.e. β1 = β2 = 0) and forward-looking considerations (i.e. δ = 0).19 We

now consider three alternative versions of this example economy under alternative values of

contemporaneous and historical productivity spillovers, α1 and α2, though always within the

range for which the dynamic equilibrium is known (from Corollary 1) to be unique.

Figure 2 illustrates phase diagrams on the two-dimensional space of Lit shares in each

of these three examples. Blue rays indicate one period of movement (so a ray’s length

shows speed of adjustment) in the direction towards each red dot and yellow stars denote

steady-states. Panel (a) begins with the case where α1 = −0.2 and α2 = 0. Because the

contemporaneous productivity spillover exhibits a strong congestion force (α1 < 0), we are

far from the barrier of non-uniqueness, so Proposition 1 suggests the economy will exhibit

low persistence. Accordingly, the blue arrows are long, showing that the economy converges

quickly to the (unique) steady state where all identical locations are equally populated.

In panel (b) we keep α2 = 0 but increase contemporaneous spillovers to α1 = 0. This

increase means that the economy has moved closer to the barrier of non-uniqueness, so

from Proposition 1, the economy may exhibit stronger persistence. Indeed, this is exactly

what occurs, as the shorter blue arrows indicate that the move from any initial population

distribution toward the (unique) steady state occurs more sluggishly.

19In particular, throughout all of the examples in Figure 2 we set: Āi = ūi = 1; µij = 1.75, τij = 1.6 for
all i 6= j and µii = τii = 1; and σ = 9 and θ = 4.
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Finally, in panel (c) we consider the case where α1 = 0 and α2 = 0.2, such that there are

now strong historical productivity agglomeration forces. Proposition 2 now implies that the

economy may feature multiple steady states and this is exactly what occurs. Indeed, there

are three stable steady states (and four other unstable steady states), each characterized by

substantial (but incomplete) concentration of the population in a single location. Intuitively,

an initial infinitesimally greater concentration in one location leads to a greater productivity

in that location in the next period through the historical agglomeration force, leading to yet

more concentration in that location, eventually leading to near complete concentration in

that location in the long-run. This illustrates how arbitrarily small initial differences in the

distribution of population (or arbitrarily small temporary shocks that may give rise to such

differences) can have large and permanent affects on the spatial distribution of economic

activity.

3 The U.S. spatial economy, 1800-2000

We now describe a procedure for mapping the above model into observable features of the U.S.

economy throughout the past two centuries. The goal is to estimate the model’s parameters

in this context. Armed with such estimates we turn in Section 4 to a set of counterfactual

exercises designed to measure persistence and path dependence in the U.S. spatial economy.

3.1 Data

Our quantification requires data on population Lit and per-capita nominal incomes wit. We

therefore build a dataset drawing on Manson et al. (2017) that tracks these two variables for

subnational regions i of the coterminous U.S. for as long a history as possible.

Starting with Lit, we obtain this series from decennial Census records of county-level

population (by age group) from 1800 onward. To distinguish between children and adults

in the model, we consider persons aged 25-74 as adults and work with 50-year steps (1800,

1850, 1900, 1950 and 2000) in order to avoid overlaps of these cohorts. Turning to wit, for

the years 1850-1950 we proxy for the relative amount of total income in any location, witLit,

by the estimated value of county-level agricultural and manufacturing output; for 2000 we

use the per-capita income reported in the Census.20 As a result, we have proxies for Lit and

wit from 1850-2000 and for Lit in 1800 as well; this allows estimation to proceed from 1850

onwards.21

20In practice, manufacturing output is not available for 1950 so we use the 1940 value of agricultural and
manufacturing output. Per-capita income is not readily available prior to 1980.

21Appendix Figures C.1 and C.2 present maps of Lit and wit in all years.
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To account for county border changes over the years we work with the set of (the largest

possible) sub-county regions that can be mapped uniquely to every county in our five years

of data.22 In the end, our sample consists of 4,975 such sub-county regions, which we refer

to as “locations” (indexed by i) from now on.

Three other data sources play an auxiliary role in our model estimation: (i) migration

flows; (ii) trade flows; and (iii) potential shifters of trade costs, productivities and amenities.

We describe these further below.

3.2 Identification and estimation

We now describe a three-step procedure that estimates the unknown parameters of the model

in Section 2. In a nutshell, the third step involves estimating a system of locational labor

supply and demand equations that represent an augmented version of the spatial equilibrium

model due to Rosen and Roback (Rosen 1979, Roback 1982); the first and second steps simply

prepare the ingredients necessary to proceed in this tradition. We do this using available

data on intranational trade Xijt and migration Lijt over our period of study.

3.2.1 Step #1: Estimating migration and trade costs

The goal of the first step is to determine the level of the migration and trade cost terms,

raised to their respective elasticity exponents, that enter the equilibrium system of equations

(13)-(16). We define these objects as Mijt ≡ µ−θijt and Tijt ≡ τ 1−σ
ijt .23

Consider first the estimation of migration costs. We begin by positing that migration

costs depend on a proxy for passenger travel time, denoted timeijt, through the relationship

lnMijt = κµt × timeijt. We then proceed to estimate timeijt (between all location pairs ij

in all years t) by assembling a geographic database that describes the network of navigable

waterways (including canals), railroads, and roads of different types available in that year.24

Given these networks, along with the observed topography, we use estimates of historical

mode-specific travel speeds to determine the likely time it would take to traverse each square

kilometer grid cell in the continental U.S. in any given year; the resulting speed maps are

22For example, suppose that county “A” in 1900 splits into “A1” and “A2” by 1950, and then “A2” splits
into “A2(i)” and “A2(ii)” by 2000. The resulting sub-county regions that we track throughout would be “A1”,
“A2(i)” and “A2(ii)”. We then apportion the county-level information into each of the sub-country regions
on the basis of land area shares (and cluster all regression standard errors at the county-year level).

23Only bilateral-specific elements of such terms matter in this system because origin- or destination-specific
components would be redundant conditional on the unrestricted values of Ait and uit. We therefore normalize
any origin-time and destination-time components of Tijt and Mijt to one.

24The canal and railroad geographic data are based on shapefiles prepared by Atack (2015) and Atack
(2016), respectively. We proxy for the 1950 road network with the 1959 road network geographic data from
Jaworski & Kitchens (2019). The remainder of the geographic data derive from Allen & Arkolakis (2014).
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reported in Appendix Figure C.3.25 We then calculate the travel time along the fastest

route between each pair of sub-county regions for each year using the Fast Marching Method

(FMM) pioneered by Tsitsiklis (1995) and Sethian (1996) and applied to the spatial literature

in Allen & Arkolakis (2014). This generates the set of travel times {timeijt}.
We next estimate κµt using a non-linear least squares (NLLS) procedure that aims to

match the model-predicted bilateral migration flows (from origin sub-county to destination

sub-county) to observed bilateral migration flows (from origin state to destination county)

in the data.26 This procedure works as follows. Given any candidate κ̃µt , we construct its

associated candidate migration costs M̃ijt from the estimated travel times. Given observed

data on the population in each location in period t and t− 1, Li,t and Li,t−1, we then invert

the model (applying Proposition 3 below) to recover the inward and outward migration

market access terms and then use these terms and equation (11) to construct the unique set

of bilateral sub-county to sub-county migration flows consistent with the observed location

populations and candidate bilateral migration costs. We then aggregate these flows to the

origin state to destination county level and calculate the sum of squared differences between

observed (log) migration flows and these predicted (log) migration flows. Our estimated κ̂µt

is the candidate κ̃µt that minimizes these squared differences.27

We now turn to the estimation of trade costs. Our procedure is similar to that for

migration costs, except that we now posit the relationship lnTijt = κτt × freightijt, where

freightijt denotes a proxy for the user cost of freight shipping. We again estimate such costs

for traversing each square kilometer in the U.S. in each year, as displayed in Appendix Figure

C.4, and then apply the FMM to obtain {freightijt}, the least-cost route freight shipping

cost for all location pairs and years.28

25In particular, we take the speed of travel by water and rail from Gordon (2016), who estimates speeds
of 4 miles per hour by water (p.186)—which we hold constant across all years, 23.2 miles per hour by train
in 1850, 33.7 miles per hour in 1900, and 49.8 miles per hour in 1950 and 2000 (averaging over the relevant
routes from Table 5-1). For travel by road, we follow Jaworski & Kitchens (2019), who assume a speed of
25 miles per hour on unpaved roads, 45 miles per hour on paved state highways and minor arterial roads, 55
miles per hour on U.S. highways and principal arterial roads, and 70 miles per hour on interstate highways.
For grid cells without water, rail, or roads, we calculate the speed of travel using Naismith’s rule of 12
minutes per kilometer with an additional 10 minutes for each 100 meters of slope.

26We do this using the random samples of individual-level Census returns in Manson et al. (2017) for 1850
(a 1% random sample), 1900 (5%), 1950 (1%), and 2000 (5%). In each case we construct our measure of
migration flows on the basis of where respondents aged 25-74 reside at the time of enumeration and where
they were born.

27This estimation procedure is consistent with assuming that there is (classical) measurement error in the
observed migration flows. We use a grid search algorithm to find κ̂µt and calculate our standard errors using
a bootstrap procedure.

28While the geographic data used are the same as for the calculation of travel times timeijt used above,
the mode-specific distance costs that we use for freightijt are different. We obtain 1850 and 1900 costs
of shipping from Donaldson & Hornbeck (2016), who, following Fogel (1964), estimate a cost of $0.231 (in
1850 dollars) per ton-mile overland (where we again scale terrain via Naismith’s rule), $0.0063 per ton-
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Finally, we estimate κτt by using a NLLS procedure that minimizes the difference between

the model-predicted bilateral trade flows between sub-county pairs (given observed output

Yit and using equation 6) and the best available trade flow data for each year. For the

years 2000 and 1950 we match the observed state-to-state trade flow data available from the

1997 Commodity Flow Survey and the 1949 rail waybill statistics collected by the Interstate

Commerce Commission (as digitized by Crafts & Klein 2014), respectively. To our knowledge,

however, there does not exist systematic intranational trade flow data in the U.S. for 1850 or

1900. To overcome this data limitation, we digitized the 1858 and 1900 Chicago Commerce

Reports (Chicago Board of Trade 1859, 1901), and use the 1858 volume to inform our estimate

for 1850. This source documents, for a range of important traded commodities, both (a) the

local prices and (b) the quantities both arriving into and departing out of Chicago by mode

of transit (i.e. particular rail line, canal, Great Lakes route, or wagon).29 We then use FMM

to calculate the mode of transit that would have been used (assuming cost-minimization) to

travel to/from Chicago for every sub-county in the U.S., thereby partitioning the U.S. by

mode of transit into Chicago.30 For these years, our NLLS procedure then finds the κτt such

that the observed value of Chicago imports/exports by mode of transit most closely matches

the model-predicted Chicago imports/exports to/from the set of locations corresponding to

that particular mode of transit.

3.2.2 Step #2: Recovering migration and trade market access terms

The goal of the second step is to invert a set of model equations in order to recover the

inward and outward migration market access terms, Λit and Πit, as well as the trade analogs,

Pit and Pit. This draws on the observed data on populations Lit and output Yit = witLit, in

combination with the equilibrium structure of the model and the estimated migration and

trade costs, M̂ijt = exp (κ̂µt × timeijt) and T̂ijt = exp (κ̂τt × freightijt), from the previous

step. To do so, we re-write the equilibrium system of equations (13)-(16) using equations (6)

mile via railroad, and $0.0042 per ton-mile via water. In 1950, we reduce the costs of travel via railroad
proportionately to the increase in the speed of travel from Gordon (2016) and then similarly update the costs
of travel via road and water to match the relative costs via mode of travel estimated in Allen & Arkolakis
(2014) (where we incorporate the fixed costs of shipping included in that study for the amount of a cross-
country journey). Finally, to account for different costs across different types of roads, we assume the average
speed of travel along road is 55 miles per hour and scale costs inversely proportional to the speed of each
type of road.

29In 1858, we have price and quantity data for 18 commodities (flour, wheat, corn, oats, rye, barley, grass
seed, beef cattle, live hog, dressed hog, hides, salt, wool, highwines, lath, shingles, lumber, and siding),
allowing us to generate the total value of Chicago imports and exports by canal, lake, overland, and for 10
different rail lines. In 1900, we have price and quantity data for 36 commodities imported and/or exported
by canal, lake, and for 23 different rail lines. See panel (a) of Appendix Figure C.5 for an example.

30Panel (b) of Figure C.5 depicts the resulting basin for each mode of transit into Chicago in 1850.
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and (11), which yields, for all i:

P1−σ
it =

∑
j

T̂ijt × Yjt ×
(
P 1−σ
jt

)−1
, (22)

P 1−σ
it =

∑
j

T̂jit × Yjt ×
(
P1−σ
jt

)−1
, (23)

(
Λθ
it

)−1
=
∑
j

M̂jit × Ljt−1 ×
(
Πθ
jt

)−1
, (24)

Πθ
it =

∑
j

M̂ijt × Ljt × Λθ
jt. (25)

The following proposition shows that the four remaining unknown variables—comprising the

inward and outward trade and migration market access terms—in equations (13)-(16) are

identified (up to an inconsequential scale factor), when raised to the exponents σ − 1 or θ,

because this system of equations has a unique solution given data on Yit, Lit and estimates

of T̂ijt and M̂ijt from step #1.

Proposition 3. Given observed data on {Yit, Lit, Lit−1} and given values of
{
T̂ijt, M̂ijt

}
there exists a unique (up to scale) set of values of

{
Pσ−1
it , P σ−1

it ,Πθ
it,Λ

θ
it

}
that satisfy equations

(22)-(25).

Proof. See Section A.5.

Note that this inversion does not require any assumption regarding the value of the trade

elasticity σ, migration elasticity θ, or degree of forward-looking behavior δ.

3.2.3 Step #3: Estimating the spillover elasticities

The third step of our estimation procedure uses the outputs of step #2 in order to esti-

mate contemporaneous (α1 and β1) and historical (α2 and β2) spillover elasticities via an

augmented Rosen-Roback procedure.

To see this, begin by substituting the productivity spillover function from equation (1)

into the outward trade market access Pit from equation (7) and imposing Yit = witLit. This

reveals the following (inverse) demand equation for labor in location i:

lnwit =

[
α1

(
σ − 1

σ

)
− 1

σ

]
lnLit + α2

(
σ − 1

σ

)
lnLit−1 +

1

σ
lnP1−σ

it +
σ − 1

σ
lnAit. (26)

In this expression, the inverse elasticity of labor demand combines the inverse elasticity of

demand for goods from a location, − 1
σ
, with the contemporaneous productivity spillovers α1;
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this latter effect is moderated by σ−1
σ

because the location faces a downward-sloping demand

curve for its output. Notably, with strong positive spillovers the labor demand curve can

be upward-sloping. Also present in the demand equation are a set of shifters: (i) lagged

population Lit−1, which raises productivity if there are historical productivity externalities

(i.e. α2 > 0); (ii) the outward trade market access Pit, which allows for the labor demand

in location i to be high if its ability to sell goods to other locations is high; and (iii) the

exogenous (and unobserved) component of productivity, Ait. Importantly, this estimating

equation describes a cross-sectional relationship that holds within any equilibrium, so it can

be used for valid point estimation even if the model’s parameters lie in a region for which

multiplicity occurs.

The inverse labor supply curve can be obtained similarly. Substituting the amenity

spillover function from equation (3) and the value function from equation (17) into the inward

migration market access Λit from equation (12), and using Wit =
(
wit
Pit
uit

)
, we obtain:

lnwit =

(
1

θ
− β1

)
lnLit − β2 lnLit−1 +

1

θ
ln Λθ

it +
1

1− σ
lnP 1−σ

it − δ

θ
ln Πθ

it+1 − lnuit. (27)

The inverse elasticity of labor supply combines the locational utility heterogeneity dispersion

θ with the contemporaneous productivity spillovers β1; analogously to the demand case, the

elasticity of labor supply can be negative if such spillovers are positive and large. Shifters

of the inverse labor supply curve comprise: (i) the lagged population in the location Lit−1,

which matters to the extent that historical amenity externalities exist (i.e. β2 6= 0); (ii) the

consumer cost-of-living Pit, which increases the nominal wage wit that is required for a given

amount of mobile workers to be willing to live in location i; (iii) the present discounted value

of a location one period in the future Πit+1 (but discounted by δ), which reduces the nominal

wage wit necessary for mobile workers to be willing to live in a location; (iv) the inbound

supply of potential migrants from other nearby locations as captured by Λit; and (v) the

exogenous (and unobserved) component of location i′s amenity, uit.
31 Again, this equation

allows parameter estimation to proceed even though equilibria may be multiple.

The locational demand-supply system in equations (26) and (27) generalizes that in the

Rosen-Roback framework (c.f. Roback 1982, Glaeser & Gottlieb 2009, Kline & Moretti 2014,

31Estimation of equation (27) requires data on Πθ
it+1 in all years, which may not be available since in some

contexts (such as ours) the final year t of interest for estimation (t = 2000 for us) may also be the last year
with available data. However, because we can always, given knowledge of the elasticity parameters, solve
the model one period forwards we can view Πθ

i,2050 as a (nonlinear) function of those parameters, allowing

application of NLLS. In practice, we find that the values of ln Πθ
i,2000 and ln Πθ

i,2050 are highly correlated, so

that a simple strategy of proxying for the missing final value of Πθ
it+1 with its last available value would be

extremely accurate.
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Hsieh & Moretti 2019) in several respects. First, it relaxes the assumption that locations

produce a homogeneous and freely traded product (i.e. that σ is infinite and τijt = 1).

Second, it relaxes the assumption that all workers have identical preferences across locations

and face no costs of migrating (i.e. that θ is infinite, and µijt = 1). This added flexibility

necessitates the inclusion of the contemporaneous and forward-looking market access terms

P1−σ
it , P 1−σ

it ,Πθ
it+1 and Λθ

it as demand and supply shifters, as recovered in step #2. Finally, it

allows for historical populations Lit−1 to affect contemporaneous labor demand and supply

via historical spillovers (α2 and β2).

We turn now to three details of estimation in our context. First we augment the esti-

mating equations (26) and (27) to include location fixed effects so that all time-invariant

geographic elements of labor demand and supply are controlled for. We further add controls

for an interaction between broad geographic region identifiers and year effects so that fea-

tures of the spatial reorganization of the US economy (such as those highlighted by Kim &

Margo 2014) are controlled for.32 Including year effects in this way is also important since

Proposition 3 clarifies how the included (log) market access terms are only identified up to

an (additive) scale factor in each year.

Second, while equations (26) and (27) could, in principle, be used to identify both the

spillovers parameters (α1, α2, β1 and β2) and the preference parameters (δ, σ and θ), in prac-

tice the cross-spatial variation is not well suited to estimating the latter precisely because

they are coefficients on market access variables that are, in their nature, highly correlated

over space. We therefore use values of the preference parameters obtained in related U.S.-

based studies: we set the intertemporal discount factor δ = 0.0535 (=
(

1
1.0603

)50
) to match

the 6.03% average annualized return on wealth in the U.S. from 1870-2015 as measured by

Jordà et al. (2019), the elasticity of substitution σ = 9 to match Donaldson & Hornbeck

(2016), and the migration elasticity θ = 4 to match Monte et al. (2018).33 However, in what

follows we assess the robustness of the results to alternative parameter values.

Finally, as with any demand-supply system, OLS estimates of the parameters in equations

(26) and (27) would generically suffer from simultaneity bias. We therefore use an instru-

mental variable (IV) procedure that draws on the insight in Roback (1982) that observable

components of amenity changes that are uncorrelated with productivity changes would be

valid instruments for estimating the demand equation (26)—and vice versa for the supply

32To construct regions, we draw a box around the continental U.S. (in the Mercator projection) and,
beginning from the southwest corner of the box, overlay squares on top of the box, each of which has an area
equal to one tenth of the area of the box. This partitions the continental U.S. into 14 different regions.

33Donaldson & Hornbeck (2016) estimate a trade elasticity of 8.22 (implying σ = 9.22) when focusing on
intranational trade in the U.S. during the late 19th century. Monte et al. (2018) estimate a location choice
elasticity across U.S. counties of 3.30 over a five-year period, albeit in a static framework abstracting from
bilateral migration costs.
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equation (27). Given the 50-year time intervals and location fixed effects that we use for

estimation, and the goal of estimating both contemporaneous and lagged spillovers, these

instruments must derive from relatively long-run changes to the U.S. economy.

For the demand equation, we follow Barreca et al. (2016) who note that technological

advances like air conditioning and more effective heating systems have made extreme hot

and cold climates more bearable (delivering greater amenity value) throughout our sample

period. Accordingly, our IVs consist of a linear time trend interacted with the average

maximum temperature in the warmest month and the average minimum temperature in the

coldest month (and their squared values to allow for nonlinearities) in each location. We

obtain such data from WorldClim.org.

For the labor supply equation instruments, we leverage two major changes in U.S. agri-

culture over the past 200 years. The first is the increased use of more intensive cultivation

practices (e.g. mechanization, fertilizer, genetic modification of seeds, etc), which raised land

productivity. Following Bustos et al. (2016), we measure the extent to which locations could

take advantage of this higher-intensity cultivation as the differential potential yield under

low and high intensity cultivation, according to the FAO-GAEZ agroclimatic model of crop

suitability (Fischer et al. 2008). Our first IV interacts this differential yield for corn, the

dominant crop throughout our period, with a linear time trend.34 The second major change

that we exploit is a shift in world demand that has altered which crops are grown in the U.S.,

most notably soy.35 To proxy for which locations saw the greatest gain in (revenue) produc-

tivity from this shift, we use the FAO-GAEZ predicted difference in potential yield between

soy and wheat (a crop for which demand has remained relatively constant over time) and

interact this with a linear time trend.36 Together, these two sets of supply-equation instru-

ments leverage heterogeneity in geographical exposure to both within-crop and across-crop

changes among the three most important food crops for U.S. agriculture.

Finally, when estimating the demand equation (26) we use the climate amenity-based

IVs, but additionally control for the agricultural productivity variables (in order to reduce

residual variation and the risk that our amenity-based IVs are correlated with unobserved

productivity variation). Analogously, our estimation of the supply equation (27) includes

34To allow for within-location heterogeneity in agroclimatic suitability, we include both the mean differ-
ential yield for corn and the standard deviation of the differential yield as instruments.

35Virtually absent in 1900, soy trailed only corn in terms of both value and acreage in 2000. Roth (2018),
for example, argues that much of this rise is due to rising demand for U.S. exports of soy to Asia.

36In 1909, wheat was cultivated on 14.7% of harvested acres allocated to principal crops; in 2000, the
figure was 17.2%; see USDA (2003). In practice, we use the high- and low-intensity scenarios for soy and
wheat, respectively, to reflect the fact that the former was grown predominantly in a more technologically
advanced era. As with the first labor supply instrument, we include both the mean soy-wheat differences
and the standard deviation of the differences as instruments.
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controls for the climate amenity variables.

To conclude the three-step procedure we note that, conditional on obtaining consistent

estimates of the elasticity parameters, equations (26) and (27) allow recovery of the geo-

graphic fundamentals
{
Āit, ūit

}
as well. Combined with the earlier estimates of {Tijt,Mijt}

from step one all model parameters are thereby identified.

3.3 Estimation results

We begin with the estimation of trade and migration costs in step #1, as reported in Table

1. Panel (a) presents the results for migration costs. We obtain {κ̂µ1850, κ̂
µ
1900, κ̂

µ
1950, κ̂

µ
2000} =

{0.02, 0.06, 0.07, 0.07} (with bootstrapped standard errors of {0.002, 0.001, 0.002, 0.001}), in-

dicating migration costs have become more responsive to travel times over the past 150

years.37 These magnitudes suggest that, for example in 1850, doubling the distance of mi-

gration via rail from 500 to 1,000 miles caused migration flows to decline by roughly a third,

whereas in 2000 a doubling of distance caused migration flows to decline by roughly half.

Turning to trade costs, Panel (b) of Table 1 reports our estimates. In this case we

find that {κ̂τ1850, κ̂
τ
1900, κ̂

τ
1950, κ̂

τ
2000} = {0.7, 0.5, 0.3, 0.4} (with bootstrapped standard errors

of {0.4, 0.4, 0.01, 0.01}). This implies that intra-U.S. trade costs have become less responsive

to freight rates over the past 150 years.38 The estimated magnitudes mean, for example,

that doubling the distance of goods shipped by water from 500 to 1,000 miles caused trade

flows to decline by roughly three quarters in 1850, whereas a similar doubling of distance

caused trade flows to fall by roughly half in 2000.

Given the estimated trade and migration costs and the observed distributions of popu-

lation and output, in step #2 we apply Proposition 3 to recover the market access terms

{Pσ−1
it , P σ−1

it , Πθ
it,Λ

θ
it}. For example, Appendix Figure C.6 depicts what the recovered inward

market access parameter Λθ
it implies for the present discounted value of residence V θ

it (since

Λθ
it = V θ

it

(
Lit
L̄

)−1
). One pattern on display is that the present discounted value of residing in

relatively densely populated locations has increased over time, resulting in an increasingly

concentrated distribution of V θ
it .

Does this pattern arise from agglomeration forces or from changes in the underlying ge-

ography? To answer this question, we turn to step #3. The parameter values implied by our

37That agents have become more responsive to migration costs is consistent with the evidence of Kaplan
& Schulhofer-Wohl (2017), who find that U.S. interstate migration rates have fallen over the past 20 years
despite declines in travel costs.

38Consistent with our estimates for the 20th century, Disdier & Head (2008) conduct a meta-analysis of
103 different papers estimating the relationship between trade flows and distance and find that distance has
a larger impact on trade after 1970 than before 1970, although most of the analyzed papers estimate the
gravity relationship after 1970 (and none of the papers examine the gravity relationship before 1870).
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2SLS estimates of the labor demand equation (26) are reported in Table 2.39 We present both

OLS and 2SLS estimates for three values of the elasticity of substitution (σ = {5, 9, 14}).
Regardless of the chosen elasticity of substitution, we estimate a large positive contem-

poraneous agglomeration spillover α1 and a small (and statistically insignificant) negative

historical agglomeration effect α2. At our preferred value of σ = 9, the 2SLS estimates are

α̂1 = 0.19 (SE = 0.040) and α̂2 = −0.041 (SE = 0.045).40,41

Table 3 displays analogous 2SLS estimates of the parameters in the locational labor

supply equation (27). As in the labor demand equation, we report the estimated amenity

spillover parameters for a number of combinations of possible trade and migration elasticities

spanning the range of values from the literature (σ ∈ {5, 9, 14}× θ ∈ {2, 4, 6}).42 For brevity

we only report the 2SLS estimates. Across all possible combinations, we estimate negative

(but statistically insignificant) contemporaneous amenity spillovers β1 and positive historical

amenity spillover β2, exactly as one would expect from the presence of a durable housing

stock (see Appendix B.2). In our preferred specification, with σ = 9 and θ = 4, we estimate

β̂1 = −0.26 (SE = 0.265) and β̂2 = 0.31 (SE = 0.178). The similar spillover sizes (in

absolute value) is consistent with housing that is durable at 50-year time scales.

What do these estimated spillovers imply for the degree of persistence and the possibility

of path dependence? To answer this question, we return to Figure 1, where our preferred

estimates from Tables 2 and 3 and are illustrated in the context of the parameter thresholds

identified in Corollary 1, Proposition 1, and Proposition 2 (evaluated at our preferred values

of σ, θ, and δ). The red star in Panel (a) indicates the location of the contemporaneous

spillover estimates, α̂1 and β̂1 (and the red oval indicates the 95% confidence interval, or CI,

for these estimates). From Corollary 1, its location in the yellow region indicates that the

dynamic path of the economy’s (bounded) equilibrium is unique—that is, given any initial

distribution of population {Li0} and known evolution of geography {τijt, µijt, Ait, uit}, we

can uniquely determine the evolution of the economy. However, we know from Proposition 1

that the red star’s location near the boundary of the parameter region in which uniqueness

39In Tables 2 and 3, the reported standard errors are two-way clustered at the location level and at the
county-year level. First-stage estimates are presented in Appendix Table C.1 and Appendix Figure C.7 maps
the spatial patterns of the predicted change in population from the first-stage regressions.

40Our estimate of the parameter α1 is similar to the value of 0.2 obtained (for the manufacturing sector)
by Kline & Moretti (2014), though it is smaller than the range of values (1.25-3.1) implied by the estimates
obtained (again for manufacturing) by Greenstone et al. (2010) (as discussed in Kline & Moretti 2014). Our
estimate of α1 + α2 = 0.15 is slightly higher than the value (0.09) estimated by Bleakley & Lin (2012).

41As reported in Table 2, the minimal first-stage Sanderson & Windmeijer (2016) F-statistic (taken across
the two first-stage equations) in this regression is 58.1, indicating that finite-sample 2SLS bias is unlikely.
The same is true for our labor supply equation estimates in Table 3.

42The choice of δ has only a minuscule effect on these results so Table 3 reports estimates of β1 and β2

obtained while using our preferred value of δ only.
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is assured suggests the possibility of very persistent historical shocks. Finally, Panel (b)

illustrates the parameter space for αss ≡ α1 + α2 and βss ≡ β1 + β2, the combination of

contemporaneous and historical spillovers that matters for characterizing steady states as per

Proposition 2. Our estimates are indicated by the green star. Evidently, this point estimate

(along with much of its accompanying CI) lies inside the (blue) region that, according to

Proposition 2, suggests the possibility of multiple steady-states, and hence the possibility

that shocks could exhibit path dependence.

4 Persistence and path dependence in the U.S.

We have just seen in Figure 1 how our model, when estimated on U.S. data from 1800-2000,

features unique equilibria, but nevertheless the possibility of both long-lived persistence and

path dependence. We now seek to quantify such phenomena by considering how the U.S.

economy would look, both today and in the future, under alternative historical conditions.

4.1 Dynamic model evolution

Prior to studying how alternative historical conditions would have affected the evolution of

the U.S. economy, there is value in first exploring how the model’s dynamic path would have

evolved in a hypothetical U.S. economy without any evolution of productivity or amenity

differences over space. This allows us to assess the role that trade, migration, and agglomer-

ation forces—along with the estimated evolution of the trade and migration costs—play in

shaping the evolution of our model economy.

To do so, we calibrate the model to the initial year, t0 = 1850, and then simulate it

forwards while holding
{
Āit, ūit

}
fixed at their t0 values.43 This generates a simulated stream

of values for predicted population L̂it in each location and year t ≥ t0. We then compare this

simulated path to the actual observed path of population Lit by estimating the regression

lnLit = β ln L̂it + δi + δt + εit,

which includes location and year fixed effects so that the coefficient β provides a comparison

of relative changes in the spatial distribution of the economy with such changes in the model

with fixed productivities and amenities. We then repeat this exercise for output, Yit and Ŷit.

43 All simulations in this section use a finite-horizon economy (with length T and Πi,T+1 = 1) to approx-
imate the infinite-horizon economy of Section 2. Our choice of T = 3500 is driven by the fact that in all
simulations the economy appears to be in steady-state (up to numerical precision) by no later than t = 3000,
and that varying our choice of T beyond that point is inconsequential.
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Column 1 of Table 4 presents the results from this exercise (using population in Panel A

and output in Panel B). We see a positive and statistically significantly correlation between

observed and hypothetical changes in the spatial distribution of economy activity. And the

(within) R2 values indicate that a model with productivities and amenities held fixed to

their 1850 values accounts for 11% of the observed variation in the changes in the spatial

distribution of population, and 13% of that for output, over the ensuing 150 years. Columns

2-7 go on to illustrate that these findings are similar across a variety of subsets of locations,

including those with initially high and low populations (columns 2 and 3), and those in

Northern, Southern, and Eastern locations (columns 4, 5, and 7), athough Western locations

(column 6) appear to behave differently in this regard (as is perhaps unsurprising given the

paucity of economic data for those locations in 1850).

This exercise highlights how a large share of the evolution of population and output in the

US economy since 1850 reflects productivity and amenity shocks.44 Such a finding motivates

our next step: a counterfactual exercise that explores alternative historical scenarios based

on a certain set of spatial rearrangements of these shocks.

4.2 The effect of history on contemporary outcomes

How different would the U.S. spatial economy look today if historical conditions had been

different? To answer this question, we need to compare actual historical conditions to coun-

terfactual alternatives. While one could imagine many counterfactual histories of interest,

we focus on one that draws inspiration from the vagaries of relative industrial success that

struck America’s communities at the turn of the 20th century. This period—known as the

Technological Revolution or the Second Industrial Revolution—was a period of rapid pro-

ductivity growth across a number of different industries due to the widespread adoption of

technological innovations such as the internal combustion engine and electrification.45

Crucially for us, the adoption of these innovations varied across locations within the

United States, often for reasons that may plausibly have involved elements of historical

“luck”. For example, Detroit’s rise as the “Motor City” may owe something to the fact that

Henry Ford happened to be born on a nearby farm. Or perhaps Buffalo became the “City of

Light” in more than just a name because it was chosen to host the Pan-American Exposition

at a time (1901) when Thomas Edison desired to demonstrate his newly invented AC power,

and did so by adorning Buffalo’s Exposition buildings with light bulbs.

44By contrast, this exercise does not provide a sense of the model’s “fit” since, by design, the model’s
estimated productivity and amenity values

{
Āit, ūit

}
exactly match the observed data on population and

output in all locations and years.
45See e.g. Landes (2003).
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Examples like these suggest that relatively similar locations may (or may not) have been

the fortunate recipients of positive productivity shocks in a time of technological change. To

study the consequences of such hypotheticals, we generate a set of counterfactual histories in

which productivity fundamentals are randomly swapped between pairs of similar locations.

For example, what if Cincinnati (with a population of 330,000 in 1900) had been chosen

instead of Buffalo (population 350,000 in 1900) as the site of 1901’s Exposition?

To operationalize this idea, albeit in an abstract manner, we carry out a set of B simu-

lations, each indexed by b, as follows. First, we rank all locations in terms of their observed

population in 1900, Li,1900. Second, we form pairs p of locations based on their nearest neigh-

bor in this ranked distribution, starting at the top; for example, Erie County, NY (home

to Buffalo) and Hamilton County, OH (home to Cincinnati) occupy ranks 11 and 12 in the

distribution.46 Third, in simulation b we draw (independently) for each pair p a random

variable Sp (with realization s
(b)
p in simulation b) that is distributed Bernoulli(1/2). When

s
(b)
p = 1, we swap the values of the fundamental productivity in 1900 (i.e. Ai,1900) among the

two locations i within pair p; and when s
(b)
p = 0 we leave the pair unchanged. Fourth, we

then simulate the model forwards from 1900 onward while holding fixed all other exogenous

locational characteristics in the model (i.e. Li,1850, ui,1900, and the entire path of Ait and

uit for t > 1900) at their values estimated in Section 3.3. We also set Ait = Ai,2000 and

ui,t = ui,2000 and hold them fixed for all t > 2000. This generates a stream of counterfactual

predictions for all the endogenous variables in the model (which we denote as L
(b)
it , V

(b)
it , etc.)

at all dates t ≥ 1900, though in practice we stop at T = 3500, or 30 generations after the

year 2000 in which the economy’s fundamentals become time-invariant.

We then repeat these four steps for all B simulations (and set B = 100 in practice). We

will also conduct on an additional (B + 1)th simulation (the output of which we label as,

for example, L
(F )
it , for “factual”) in which there are no swaps at all. This corresponds, for

t ≤ 2000, to the factual path taken by variables such as Lit in the data. For years t > 2000

this exercise therefore simulates forward a model that (by design) fits the past data perfectly.

To summarize, each of these “swap” counterfactual history simulations holds everything

in the model constant apart from the fundamental sources of productivity in 1900, Ai,1900.

And even the Ai,1900 distribution is held exactly constant (not just on aggregate but also that

across the N/2 pairs of locations). The only thing being perturbed in any counterfactual

history is the within-pair assignment of productivity in 1900 among pairs of locations that

46Other examples of pairs include the counties that are home to Worcester and San Francisco (ranks 17
and 18), Providence and Baltimore (ranks 21 and 22), New Haven and New Orleans (ranks 23 and 24), and
Louisville and Minneapolis (ranks 27 and 28). Due to the odd number of locations, that with the smallest
1900 population—a subset of Craig County, VA—is without a partner. We therefore leave its productivity
unchanged in every simulation.
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are as close as possible to one another in terms of their 1900 populations.

4.2.1 Fragility and resilience

We begin by examining how the spatial distribution of the U.S. economy in the year 2000

varies across different counterfactual histories. Which locations tend to be fragile in the face

of these shocks and which tend to be resilient? Figure 4 shows a plot of the standard deviation

of the population lnL
(b)
i,2000 (as well as the PDV lnV

(b)
i,2000) across the B simulations against

the factual population in 2000, L
(F )
i,2000. There are two key take-aways. First, small historical

shocks 100 years in the past have substantial impacts on nearly all locations, with the average

standard deviation across simulations in log population of 0.38 across simulations. Second,

while no location is immune to these shocks, locations that are in reality more populated

exhibit greater resilience to historical shocks; for example, the top quartile of locations by

factual population in 2000 had an average standard deviation of 0.35 compared to 0.42 for

the bottom quartile.

Similar patterns are on display for the (log) present discounted value, lnV
(b)
i,2000, but in

a substantially dampened fashion throughout the distribution, as we would expect due to

the spatial smoothing facilitated by trade and migration. However, even the PDV is hardly

impervious to 100 year-old shocks; for example, the largest 25 locations have an average

standard deviation of lnV
(b)
i,2000 of 0.07.

4.2.2 Luck

Having seen the large effects of historical shocks on modern outcomes on display in Figure

4, a natural question is how the factual history compares to other possible histories—that

is, how lucky was “our” particular history? To evaluate this, we compare the factual spatial

distribution of present discounted values V
(F )
i,2000 to the distributions of all other B simulations.

Figure 5 displays the (population-weighted) median and interquartile range of the log PDV

across all histories, relative to our own. As is evident, our history was relatively lucky, with

the median person enjoying a larger PDV from their residence in the factual scenario than

in 75 of the 100 other simulations. Moreover, the magnitudes concerned are substantial: for

example, the median person in the factual economy has a PDV that is 8.4% greater than that

in the tenth lowest alternative history (although also 2.1% worse than then tenth highest).

What makes our history lucky relative to the alternative histories considered? To shed

light on this question, we examine how the factual year 2000 spatial distribution of economic

activity differed from alternative histories. To do so, for each history b, we order each

location by either its population or its PDV. Then, for each location, we calculate the
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fraction of alternative histories for which the factual rank of that location exceeded the

alternative history rank. For example, in reality, Minneapolis, MN was the 32nd most

populated location in the year 2000; we calculate the fraction of the b counterfactual histories

for which Minneapolis was ranked lower than 32nd. Figure 6 presents the results. As is

evident, locations in New England, New York, and the upper Midwest—commonly referred

to as the “rust belt”—had greater population rankings (panel a) and PDVs (panel b) in the

factual history than in most other counterfactual histories considered. On the other hand,

locations in the Great Plains, Southwest and Rocky Mountain states were not so lucky.47

4.2.3 Persistence

The two previous results find that small historical shocks, even a century ago, can play a

large role in determining the spatial distribution of contemporary U.S. economic activity,

suggesting the presence of substantial persistence. We now quantify the extent of such

persistence directly. While the exogenous changes in our simulations are to productivities

Ai,1900, a useful way to summarize the effect of these shocks can be obtained by noting that,

from the perspective of any year t > 1900, the only impact of these shocks is to alter {Li,1900},
the initial conditions of the model’s only state variable. We therefore study the impact of

a change in such initial conditions, rather than the underlying shocks to Ai,1900 that altered

these initial conditions, as follows.

For any generic “outcome” of interest, Oit, we use the data generated by the model

simulations b = 1...B in order to estimate the regression

lnO
(b)
it = δOit + ηOit lnL

(b)
i,1900 + ε

O(b)
it (28)

separately for each location i and time period t > 1900. Our interest lies in the persistence

elasticity (for outcome O), denoted by ηOit . This elasticity measures the average relationship,

across the B simulations, in location i between that location’s historical population L
(b)
i,1900

and its value for the outcome O
(b)
it in some later period t. The error term ε

O(b)
it in equation

(28) is almost surely correlated with L
(b)
i,1900, for any outcome—as, for example, equation

(20) makes clear when Oit represents population. But lnA
(b)

i,1900 can serve as a valid IV for

consistent estimation of ηOit given that it is randomly assigned (by design) and excludable

47This is partially due to the fact that rust belt locations tended to be the member of population-matched
pairs with the higher value of Ai,1900. For example, a regression of the variable plotted in Figure 6 (the
fraction of alternative histories with a worse rank for a location than its factual rank) on the within-pair
rank of Ai,1900 has an R2 of 0.31 for population and 0.48 for PDV. But evidently the majority of the variation
in“luck” rests on factors beyond a location’s own productivity draw, such as the spatial configuration of other
locations’ characteristics.
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(given that, as discussed, population is the model’s only state variable).

Figure 3 reports the distribution (across locations) of the estimated values of the per-

sistence elasticity for population η̂Lit that corresponds to each of the years t = 1950-2500.48

The results confirm substantial persistence of temporary shocks: for example, the median

population elasticity η̂Li,2000, 100 years after the simulated shocks, is 0.37.49 While there is

considerable heterogeneity across locations owing to differences in migration and trade mar-

ket access, even the fifth percentile value in the population elasticity distribution is 0.33. This

suggests that in a dynamic economic geography model like the one developed here, it should

be considered the norm, rather than the exception, to observe that a local event that raises

a location’s population at a point in time leads to centuries-long economic persistence.50

Also shown in Figure 3 is the distribution of the elasticities η̂Vit , where the outcome Oit

is the present discounted value V
(b)
it . As expected, the PDV elasticities η̂Vit are considerably

lower than the local population elasticities η̂Lit—because of trade and migration, the PDV

draws on both local and nearby geographical advantage, so the local impact of local shocks

is muted by spatial interactions and arbitrage. Still, the median elasticity in the year 2000,

η̂Vi,2000, is 0.09, suggesting substantial persistence in PDV despite these attenuating forces.

4.3 The effect of history on future outcomes

Taken together, the previous results suggest that the distribution of economic activity today

depends strongly on the vicissitudes of history because temporary shocks have long-lasting

effects. But do the temporary shocks induced by our swap counterfactuals exhibit any

permanent effects? That is, do we see evidence for path dependence?

To answer this question, we return to Figure 3, this time looking many centuries beyond

the year 2000. While this is undoubtedly a heroic exercise, it provides a direct way to

assess the path-dependent properties of our model. Figure 3 demonstrates a clear sense

of (very slow) convergence to a unique steady-state. That is, while there are persistent

effects of the historical shock for hundreds of years, by the year 2500—600 years after the

shock occurred—the estimated persistence elasticities are essentially zero in all simulations.

48To account for the fact that the elasticities η̂Oit are estimates, in this figure we weight each location by
the inverse of the square of the standard error of its estimate. The instruments are typically very strong,
with a mean (median) first stage F-statistic of 153 (29) and 69% of locations’ F-statistics exceeding 10.

49This value is very close to the (squared) partial elasticity of population persistence given in equation (20)

of
(

α2(σ−1)+β2σ
1+σ

θ−(α1(σ−1)+β1σ)

)2

≈ 0.37, implying that, for the median location, and on average across simulations,

the equilibrium effects of the market access terms in (20) are approximately zero.
50As a point of comparison, Peters (2022) uses variation in refugee assignment across locations in post-

World War II Germany to estimate a 50-year population persistence elasticity of 0.88, which is actually
larger than the equivalent predicted by our model (0.61 on average).
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In addition, we find that by the year 3000 there is no simulation in which the correlation

between its distribution of log population and that in the factual history is smaller than

0.9997. That is, there is no evidence of these small temporary shocks resulting in permanent

changes to the distribution of the U.S. spatial economy.51

However, as Proposition 2 highlights, the possibility of path dependence depends on the

strength of the combined contemporaneous and historical productivity spillovers α1 +α2 and

amenity spillovers β1+β2. The above simulations were conducted by using the point estimates

of these parameters (the green star in Figure 1), without regard to the uncertainty that

accompanies these estimates (the dashed green ellipse, indicating the 95% CI, in Figure 1).

A natural question is whether the above finding, that our historical 1900 swap counterfactuals

exhibit no path-dependent effects, continues to be true throughout the CI.

To investigate, we repeat the above simulations across a range of values of α1 + α2 (and

analogously, β1 + β2) within its CI. In order to reduce the number of cases to consider, we

focus on increasing the historical spillover parameter α2 (while holding α1 constant) towards

the upper limit of the 95% CI of α1 + α2.52 This mimics the example in Section 2.4: hold-

ing contemporaneous spillovers α1 constant, increasing the strength of historical spillovers

α2 can make path dependence more likely. For each alternative value of α2 considered, we

re-calculate the underlying distribution of productivities and amenities
{
Āit, ūit

}
to exactly

match the observed distribution of economic activity, re-perform the 100 alternative histo-

ries—along with the one factual history—where we randomly swap productivities in 1900

between similar locations, and re-simulate the entire evolution of the economy from 1900 on-

wards.53 For each simulation b, we calculate the (population weighted) average (log) present

discounted value in the year 3000, ln V̄
(b)

3000 ≡
∑

i

(
Li
L̄

)
lnV

(b)
i,3000, in order to quantify how such

long-run aggregate welfare depends on small shocks in the distant past.

Figure 7, panel (a) presents the results. Raising α2 increases the strength of the model’s

agglomeration forces, so it is not surprising to see that the long-run average of welfare in all

simulations increases as well. More surprisingly, however, this figure demonstrates that this

small increase in the strength of historical spillovers leads to a bifurcation with substantial

welfare consequences: minor historical shocks can lead to many alternative long-run spatial

51Of course, this does not imply that this model economy, at these parameter values, definitely exhibits
a unique steady-state, only that the types of shocks we consider do not appear to be large enough to cause
the state variable (the distribution of population) to move from the basin of attraction associated with one
steady-state to that of a potential alternative steady-state. Given the size of the model’s state space we are
unaware of a feasible algorithm that could determine the uniqueness of steady-states in cases (such as ours)
where the sufficient condition in Proposition 2 is violated.

52Unsurprisingly, exploring the lower half of the CI, where spillovers are weaker, shows no evidence for
path dependence.

53To facilitate comparisons across values of α2, simulation b always uses the same values of s
(b)
p regardless

of the value of α2 used.
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distributions, each associated with very different levels of aggregate long-run welfare.

For example, at our point estimate of α̂2 = −0.041 we have seen that all 100 alternative

perturbations of 1900 fundamentals result in the same steady-state as that of the factual,

unperturbed economy. However, increasing α2 to 0.045—an increase of 4/3 of the standard

error of α1+α2—leads these 101 alternatives to end up in three different spatial distributions.

Another increase of 1/3 of a standard error admits an additional long-run spatial distribution,

and a further increase to two standard errors results in eight possible spatial distributions.

In each case we see that the difference between the average ln PDV in the best and worst

spatial distributions is large. For example, at the largest value of α2 that we consider, this

difference is approximately a factor of two (0.68 log points). Finally, panel (b) of Figure 7

illustrates that analogous results—bifurcation, often with real welfare consequences—obtain

for the case of historical amenity spillovers β2 as well.

4.4 Discussion

The results in this section convey a number of lessons about how we might expect history

to matter in a dynamic economic geography model when it is estimated to fit long-run U.S.

data. We have seen how merely swapping the productivity fundamentals of similarly-sized

locations in 1900—while holding fixed all other exogenous features before, during and after

the year 1900—can set in motion a wide range of long-run consequences. Local shocks have

large effects on their local economies, and these effects continue to leave their trace on local

outcomes over many centuries. Indeed, these effects can be so long-lived that one might

conclude (when looking at impacts of shocks on the scale of a few centuries, say) that they

are permanent, providing evidence for an economy with multiple steady-states.

As suggested by Proposition 2, whether the particular counterfactual swaps we consider

do have genuinely permanent consequences—that is, that the economy exhibits multiple

steady-states and that our counterfactual swaps cause the economy to cross from one basin

of attraction into another—depends on where one looks within reasonable segments of the

parameter space. In particular, we do not see this behavior at the point estimates of our

historical spillovers parameters, but do see it at modestly higher values of those parameters

(well within our estimated confidence intervals). In this sense, our estimates for the U.S.

spatial economy straddle the bifurcation boundary between an economy that displays path-

dependent effects from even relatively mundane historical events and one that doesn’t.

Given this, one might presume that the welfare consequences of the path dependence we

study would be minor—that if our swap counterfactual shocks are barely large enough to

reach the basin of a different steady-state then they could hardly be expected to reach one
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with meaningfully different aggregate welfare properties. Our results firmly reject such a pre-

sumption. They are consistent with an economic geography in which small historical events

can have substantial consequences, not only for the spatial location of economic activity but

for its aggregate efficiency as well.

5 Conclusion

It is not hard to look at the geographic patterns of economic activity around us and believe

both that agglomeration forces are at work and that they may even be strong enough to

cause a self-reinforcing clustering of economic activity. This opens up the possibility that

there are many such spatial configurations in which mobile factors could settle—some good,

some bad—as well as the potential for historical accidents, such as initial conditions or long-

defunct technological shocks, to play a long-lived or even permanent role in determining the

distribution and efficiency of spatial allocations.

This paper has sought to develop a dynamic and forward-looking economic geography

framework that can be used to characterize and quantify these possibilities. We have derived

conditions on how contemporaneous and historical agglomeration spillovers in production

and amenities govern: (i) the existence and uniqueness of equilibria; (ii) the duration of

persistence of shocks around a steady-state; and (iii) the scope for multiple steady-states

and hence path dependence. A particularly rich region of the model’s parameter space—and

one that our application to the U.S. from 1800 onwards suggests is very much a possibility—is

where equilibria are unique and easy to solve for, persistence lasts many centuries, and minor

perturbations in historical conditions can lead the economy towards distinct steady-states

with substantial differences in overall efficiency. One implication of this parameter region is

that temporary events in many domains may leave large and long-lived geographical traces.

The design of place-based policy will also be subtle in the presence of such features.

While we have developed this paper’s empirical and theoretical tools with applications to

economic geography in mind, they could be applied to other areas in which increasing returns

and coordination failures, and hence multiplicity and path dependence, have long appeared

as objects of theoretical interest that lack a corresponding amount of high-dimensional quan-

tification and simulation. Applications could include: urban phenomena such as residential

segregation, sorting, and“tipping”dynamics (Schelling 1971; Card et al. 2008; and Lee & Lin

2018); traditional “big push” models of development (Rosenstein-Rodan 1943; Murphy et al.

1989; and Krugman & Venables 1995); technology adoption in the presence of network effects

and switching costs (David 1985; and Farrell & Klemperer 2007); and dynamic phenomena

in political economy such as those surveyed in Acemoglu & Robinson (2005).
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Figure 1: Uniqueness, path dependence, and agglomeration spillover estimates

(a) Uniqueness of the transition path (b) Possibility of path dependence

Notes: This figure illustrates what the productivity and amenity spillovers estimated in Section 3.3 imply for

the equilibrium properties of the model from Corollary 1 and Proposition 2 (when evaluated at our preferred

values of σ, θ, and δ). In panel (a), we show that the estimated pair of contemporaneous productivity and

amenity spillovers α̂1 and β̂1—indicated by the red star—are in the yellow region, which from Corollary 1

implies that the transition path of the economy is unique. In panel (b), we show that the estimated combina-

tion of contemporaneous and historical productivity and amenity spillovers α̂1 + α̂2 and β̂1 + β̂2—indicated

by the green star—lies in the blue region, indicating the possibility of path dependence following Proposition

2. In both panels, 95% confidence intervals are shown with dashed lines.
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Figure 2: Persistence and path dependence in a three-location economy

(a) Low persistence (α1 = −0.2, α2 = 0)

Location 1

Location 2

Location 3

(b) High persistence (α1 = 0, α2 = 0)

Location 1

Location 2

Location 3

(c) Path dependence (α1 = 0, α2 = 0.2)

Location 1

Location 2

Location 3

Notes: These figures illustrate phase diagrams for a three-location example economy. Blue arrows (with

motion towards the red tips) indicate the change in the unique (following Corollary 1) equilibrium distribu-

tion of population from one period to the next, with yellow stars denoting stable steady-states. Panel (a)

has relatively low values for both contemporaneous productivity spillovers α1 and historical spillovers α2;

following Proposition 1, its persistence is therefore relatively low (blue arrows are long). Panel (b) increases

the value of α1, giving rise to longer persistence (shorter arrows). Panel (c) then increases the value of α2,

which, following Proposition 2, results in multiple steady-states (three yellow stars). See Section 2.4 for

details.
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Figure 3: How persistent are historical shocks?
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Notes: This figure shows the distribution of estimated elasticities of the local persistence elasticity, η̂Oit for two

outcomes “O” (population Li,t or present discounted value Vit), across all locations i and for each indicated

year t. Following equation (28), ηOit is obtained from a regression of lnO
(b)
it on L

(b)
i,1900 across 100 simulations

b, separately by location-year, using the (randomly assigned) value of exogenous productivity A
(b)

i,1900 as an

IV. Each simulated history randomly shuffles the realized exogenous productivity in the year 1900 between

all pairs of locations, where pairs are assigned to locations with the closest 1900 populations. The dots

indicate the median estimated elasticity η̂Oit across all locations (and the bar indicates the 5-95% range) in a

given year, weighting elasticity estimates by the inverse of the square the estimate’s standard error.
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Figure 4: How resilient are locations to historical shocks?
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Notes: This figure plots the standard deviation of log population lnL
(b)
i,2000 (and log present discounted value

lnV
(b)
i,2000) in the year 2000, across 100 different simulations b of alternative historical conditions, against each

location’s actual year 2000 log population lnLi,2000. Each simulated history randomly shuffles the realized

exogenous productivity A
(b)

i,1900 in the year 1900 between all pairs of locations, where pairs are assigned to

locations with the closest 1900 populations.
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Figure 5: How lucky was our particular history?
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Notes: This figure compares the present discounted value (PDV, i.e. Vit) of our factual history to 100

different simulations of alternative historical conditions. Simulations are ordered by their median (log) PDV

(indicated with a blue x), where the factual history’s PDV (indicated in green) is normalized to zero. The

upper and lower quartiles of the PDV across locations are also indicated (with light blue dashes). Each

location is weighted by its population so that the PDV reflects the median (and upper/lower quartiles) of

each agent in the economy. Each simulated history b randomly shuffles the realized exogenous productivity

A
(b)

i,1900 in the year 1900 between all pairs of locations, where pairs are assigned to locations with the closest

1900 populations.
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Figure 6: How lucky were different locations?

(a) Population
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Notes: This figure compares the actual distribution of economic activity in the year 2000 to 100 different

simulations of alternative historical conditions. Each simulated history b randomly shuffles the realized

exogenous productivity A
(b)

i,1900 in the year 1900 between all pairs of locations, where pairs are assigned to

locations with the closest 1900 populations. For each simulated history, we calculate the rank of each location

(in terms of its population in panel (a) or PDV in panel (b)) relative to all other locations. The two panels

of the figure show the fraction of simulated histories for which each location exceeds that rank in its actual

history.
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Figure 7: The possibilities of path dependence

(a) Increasing the historical productivity spillover (α2)
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Notes: This figure shows how the population weighted average (log) PDV in the year 3000 for each coun-

terfactual history b, ln V̄
(b)
3000, changes as we increase the historical productivity spillover α2 (panel a) or the

historical amenity spillover β2 (panel b). The range considered runs from the point estimate reported in

Tables 2 and 3 (α̂2 = −0.04 and β̂2 = 0.31, respectively) to a value that is larger by twice the value of the

standard error reported in Tables 2 and 3 (SE(α̂2) = 0.05 and SE(β̂2) = 0.18, respectively).
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A Online Appendix: Proofs

A.1 Proof of Theorem 1

This theorem provides a sufficient condition for the uniqueness of a bounded equilibrium solution to equation
(18), which we restate here for convenience:

xi,h,t =

N∑
j=1

Kij,h,t

H∏
h′=1

(xj,h′,t)
ε
j,t

h,h′ (xj,h′,t+1)
ε
j,t+1

h,h′ (xi,h′,t+1)
εi,t+1

h,h′ (xj,h′,t−1)
ε
j,t−1

h,h′ (xi,h′,t−1)
εi,t−1

h,h′ . (A.1)

This system of equations holds for all i ∈ {1, ..., N} ≡ N , h ∈ {1, ...,H} ≡ H, and t ∈ {1, ...,∞} ≡ T .

The values of {xi,h,t}i,h,t ∈ RN×H++ × .... are unknown, whereas those of {Kij,h,t}ij,h,t ∈ K ⊆ RN
2×H

+ ×

....,
{
ε
j,t
h,h′ , ε

j,t+1
h,h′ , ε

i,t+1
h,h′ , ε

j,t−1
h,h′ , ε

i,t−1
h,h′

}
h,h′
∈ R5(H×H), and, for some subset H̃ ⊆ H, the initial conditions

{xi,h,t}h∈H̃,i∈N ,t=0 ∈ RN×H̃++ are finite and given, where H̃ is the dimension of H̃. Theorem 1 is as follows:

Theorem 1. Consider the inhomogeneous linear second-order difference equation,(∣∣Ei,t−1∣∣+
∣∣Ej,t−1∣∣)µt−1 −

(
I−

∣∣Ej,t
∣∣)µt +

(∣∣Ej,t+1
∣∣+
∣∣Ei,t+1

∣∣)µt+1 = bt, (A.2)

where: the absolute value operator |·| is taken element-wise; I denotes the H ×H identity matrix; the H ×H
matrices Ei,t−1, Ej,t−1, Ej,t, Ej,t+1, and Ei,t+1 are given and correspond to the values defined in equation
(18); the sequence bt is given for all t ∈ T ; the initial conditions µh̃,0 = 0 for all h̃ ∈ H̃; and µt is unknown

for all t > 0 and for all h̃ /∈ H̃ at t = 0. Then there is at most one bounded equilibrium solution to equation
(18) if the following two conditions hold:

(a) In the case where bt = 0 for all t ∈ T , the unique solution to (A.2) is µt = 0 for all t ∈ T .
(b) In the case where bt ≥ 0 (and where at least one element of the inequality is strict) for all t ∈ T ,

there exists no solution to (A.2) of the form µt ≥ 0 for all t ∈ T .

Proof. Consider any two bounded solutions that satisfy equation (18), which we will call {xi,h,t}i,h,t and

{yi,h,t}i,h,t. Define zi,h,t ≡ yi,h,t/xi,h,t. We will show that, under the conditions of the Theorem, zi,h,t = 1
for all i, h, t, i.e. xi,h,t = yi,h,t.

From equation (18), we have:

zi,h,t =

N∑
j=1

Fij,h,t

H∏
h′=1

z
ε
j,t

h,h′

j,h′,tz
ε
j,t+1

h,h′

j,h′,t+1z
εi,t+1

h,h′

i,h′,t+1z
ε
j,t−1

h,h′

j,h′,t−1z
εi,t−1

h,h′

i,h′,t−1, (A.3)

where Fij,h,t ≡
Kij,h,t

∏H
h′=1

x
ε
j,t

h,h′
j,h′,tx

ε
j,t+1

h,h′
j,h′,t+1

x
ε
i,t+1

h,h′
i,h′,t+1

x
ε
j,t−1

h,h′
j,h′,t−1

x
ε
i,t−1

h,h′
i,h′,t−1∑N

j=1Kij,h,t
∏H
h′=1

x
ε
j,t

h,h′
j,h′,tx

ε
j,t+1

h,h′
j,h′,t+1

x
ε
i,t+1

h,h′
i,h′,t+1

x
ε
j,t−1

h,h′
j,h′,t−1

x
ε
i,t−1

h,h′
i,h′,t−1

.

Because {xi,h,t}i,h,t and {yi,h,t}i,h,t are both bounded, zi,h,t is also bounded, i.e. there exists a set of

finite scalars {mh,t,Mh,t}h,t such that we have mh,t ≤ zi,h,t ≤Mh,t for all i. Define µ̃h,t ≡Mh,t/mh,t as the
ratio of these bounds and µh,t ≡ ln µ̃h,t as its log. Note that by construction µ̃h,t ≥ 1 and µh,t ≥ 0. Using

the fact that
∑N
j=1 Fij,h,t = 1, equation (A.3) implies:

µ̃h,t ≤
H∏
h′=1

µ̃

∣∣∣εj,t
h,h′

∣∣∣
h′,t µ̃

∣∣∣εj,t+1

h,h′

∣∣∣+∣∣∣εi,t+1

h,h′

∣∣∣
h′,t+1 µ̃

∣∣∣εj,t−1

h,h′

∣∣∣+∣∣∣εi,t−1

h,h′

∣∣∣
h′,t−1 ,

which, by taking logs, can be written in matrix notation as:

µt ≤
(∣∣Ei,t−1∣∣+

∣∣Ej,t−1∣∣)µt−1 +
∣∣Ej,t

∣∣µt +
(∣∣Ej,t+1

∣∣+
∣∣Ei,t+1

∣∣)µt+1, (A.4)

which is equivalent to the inhomogeneous linear second-order difference equation (A.2) for some bt ≥ 0. By
condition (b) of Theorem 1, no bt ≥ 0, bt 6= 0 ensures µt ≥ 0 for all t ∈ T . Hence, the only admissible

1



solution to equation (A.4) is for the inequality to hold with equality. By condition (a) of Theorem 1, this is
the unique solution. Hence zi,h,t = 1 for all i, h, and t, as required.

Remark 1. Conditions (a) and (b) of Theorem 1 can be verified by using existing results from the study
of inhomogeneous linear second-order difference equations. Consider the following such equation (which is
equivalent to (19) but moved forward a period to respect conventional timing assumptions):

|A|xt − (I − |B|)xt+1 + |C|xt+2 = bt, (A.5)

Following Tisseur & Meerbergen (2001) and Gohberg et al. (2005), consider the following quadratic eigenvalue
problem (QEP). Define the H ×H matrix polynomial Q (λ) as:

Q (λ) = λ2 |C| − λ (I − |B|) + |A|

and let Λ (Q) ≡ {λ ∈ C|detQ (λ) = 0} be the set of quadratic eigenvalues of Q (λ). When |C| is singular (as
will indeed be the case when we apply this Remark to Corollary 1), we have r < 2H eigenvalues, to which we
add 2H − r infinite eigenvalues. Let the matrices (X,J) form the Jordan pair corresponding to Q (λ). That
is, J is a 2H × 2H matrix (or, equivalently, an r × r block matrix) that contains the eigenvalues and their
algebraic multiplicities of Q (λ) and X is an H × 2H matrix containing the corresponding Jordan chains.
Furthermore, decompose (X,J) into a finite Jordan pair (XF ,JF ) corresponding to the finite eigenvalues
and an infinite Jordan pair (X∞,J∞) corresponding to the infinite eigenvalues, where J∞ is a Jordan matrix
formed of Jordan blocks setting the eigenvalue λ = 0, i.e. X = [XF ,X∞] and J = JF � J∞ (where “�”

denotes the direct sum, i.e. A � B ≡
(
A 0
0 B

)
). Finally, define the resolvent matrix Z = [ZF ,Z∞] as

follows: (
ZF
Z∞

)
=

(
I 0
0 J∞

)(
XF X∞

|C|XFJF − |A|X∞J∞ − (I − |B|)X∞

)−1(
0
I

)
.

The resolvent along with the Jordan pair forms the Jordan triple. Then, from Theorem 8.3 of Gohberg et al.
(2005), the general solution of (19) is:

µ0 = XFa−
v−1∑
t=0

X∞J
t
∞Z∞bt, (A.6)

µt = XFJ
t
Fa−

v−1∑
τ=0

X∞J
t
∞Z∞bt+τ +

t−1∑
τ=0

XFJ
t−τ−1
F ZF bτ for t ≥ 1, (A.7)

where v is a positive integer such that Jv∞ = 0 and a is an arbitrary vector.
The general solution of (19) allows us to derive sufficient conditions that imply conditions (a) and (b) of

Theorem 1. If (i) the number of eigenvalues λ ∈ Λ (Q) inside the unit circle is equal to H̃, i.e. the number

of dimensions of
{
xi,h̃,0

}
that is given, then condition (a) of Theorem 1 is satisfied. Moreover, since any

bounded solution must be in the span of the eigenvectors associated with these eigenvalues and µh̃,0 = 0

for all h̃ ∈ H, we have µ0 = 0. If in addition (ii) J∞ = 0 and (iii) XFZF ≤ 0, then from equation A.6,
µ0 = XFa. Since µ0 = 0, as long as (iv) the Jordan chains corresponding to eigenvalues with moduli less
than one are linearly independent, we have a = 0. Because a = 0, from equation A.7, µ1 = XFZF b0. But
because XFZF ≤ 0, the only b0 ≥ 0 that ensure XFZF b0 ≥ 0 are those such that XFZF b0 = 0 and hence
b0 = 0. Since this implies µ1 = 0, we can use the same argument to show that b1 = 0 and, proceeding
inductively forward for all t ∈ T , that condition (b) is satisfied. Hence, conditions (i)-(iv) imply conditions
(a) and (b) of Theorem 1.

A.2 Proof of Corollary 1

We first restate the Corollary:
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Corollary 1. Suppose that the matrices of elasticities Ej,t, Ej,t+1, Ei,t+1, Ej,t−1, and Ei,t−1 described in
Theorem 1 are as follows:

Ej,t =

σ̃ (1 + α1σ + β1 (σ − 1)) (1− σ) σ̃ 0
0 θ 0
0 0 −θ

Γ−1,

Ej,t+1 =

0 0 0
0 0 δθ
0 0 0

Γ−1, Ei,t+1 =

0 0 0
0 0 0
0 0 δθ

Γ−1,

Ej,t−1 =

σ̃ (α2σ + β2 (σ − 1)) 0 0
0 0 0
1 0 0

Γ−1, Ei,t−1 =

σ̃ (α2 (σ − 1) + β2σ) 0 0
0 0 0
0 0 0

Γ−1,

where σ̃ ≡ (σ − 1) / (2σ − 1). If these matrices satisfy conditions (a) and (b) of Theorem 1, then for any
initial population {Li0} and geography {Āit > 0, ūit > 0, τijt = τjit, µijt > 0}, there exists at most one
bounded equilibrium in the model described by equations (13)-(17).

Proof. In order to apply Theorem 1 to our case at hand, we proceed in three steps to transform our system
of equations (13)–(17) into the form of equation 18.

First, we impose the symmetry of trade costs. When trade costs are symmetric, Allen & Arkolakis (2014)
show that the origin and destination fixed effects of the gravity trade equation are equal up to scale. That
is if Xijt = Kijtγitδjt, Kijt = Kjit, and

∑
j Xijt =

∑
j Xjit, there exists a κt > 0 such that:54

γit = κtδit.

From equation (4), this implies:

w1−σ
it Aσ−1

it = κtP
σ−1
it witLit ⇐⇒

wit = κ
1

1−2σ

t W σ̃
it ū
−σ̃
it Ā

σ̃
itL

(α1−β1+ 1
1−σ )σ̃

it (Li,t−1)
(α2−β2)σ̃

where σ̃ ≡ σ−1
2σ−1 , and we have used the spillover functions with notation Ait = ĀitL

α1
it (Li,t−1)

α2 and

uit = ūitL
β1

it (Li,t−1)
β2 . As a result, we can combine the first two equilibrium conditions (13) and (14) into

the following single condition:

L
σ̃(1−α1(σ−1)−β1σ)
it W σ̃σ

it =
∑
j

Kij,1,t (Li,t−1)
σ̃(α2(σ−1)+β2σ)

(Lj,t−1)
σ̃(α2σ+β2(σ−1))

×Lσ̃(1+α1σ+β1(σ−1))
jt W

−(σ−1)σ̃
jt , (A.8)

where Kij,1,t ≡ τ1−σ
ijt Ā

(σ−1)σ̃
it ūσ̃σit ū

(σ−1)σ̃
jt Āσ̃σjt . We note that given {Li0}i∈N and the initial geography Kij,1,0,

equation (A.8) uniquely identifies {Wi0}i∈N . In what follows, we then take H̃ = 2, i.e. the initial distribution
population and welfare is taken as given.

Second, we use equation (17) to write Vit = WitΠ
δ
it+1 and substitute this expression into equations (15),

54The exact scale (κ) is determined by the aggregate labor market clearing condition. However, the scale
can be ignored by first solving for the “scaled” labor (i.e. imposing the scalar is equal to one) and then
recovering the scale by imposing the labor market clearing condition. This does not affect any of the other
equilibrium equations below, as they are all homogeneous of degree 0 with respect to labor.
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(16), and (A.8), yielding:

L
σ̃(1−α1(σ−1)−β1σ)
it W σ̃σ

it =
∑
j

(Kij,1,t (Li,t−1)
σ̃(α2(σ−1)+β2σ)

(Lj,t−1)
σ̃(α2σ+β2(σ−1))

× Lσ̃(1+α1σ+β1(σ−1))
jt W

−(σ−1)σ̃
jt )

Πθ
it =

∑
j

Kij,2,tW
θ
jtΠ

δθ
jt+1

LitW
−θ
it =

∑
j

Kij,3,tLjt−1Π−θjt Πδθ
it+1,

where Kij,2,t ≡ µ−θij,t and Kij,3,t ≡ µ−θji,t. The purpose of this step (along with the previous step) is to reduce
the complexity of the equilibrium system to 3×N equations with 3×N unknowns {Lit,Wit,Πit} for each
time period t ∈ {1, ....}.

Third, we impose the following change of variables:

xi,1,t ≡ Lσ̃(1−α1(σ−1)−β1σ)
i,t (Wi,t)

σ̃σ

xi,2,t ≡ Πθ
i,t

xi,3,t ≡ Li,tW−θi,t

where: lnx1,i,t

lnx2,i,t

lnx3,i,t

 =

σ̃ (1− α1 (σ − 1)− β1σ) σ̃σ 0
0 0 θ
1 −θ 0


︸ ︷︷ ︸

≡Γ

 lnLit
lnWit

ln Πit



provides the one-to-one mapping between {xi,1,t, xi,2,t, xi,3,t} and the original endogenous variables {Li,t,Wi,t,Πi,t},
which then allows us to re-write the equilibrium system of equations as follows:

xi,1,t =

N∑
j=1

(Kij,1,t

(
x
γ−1
11
i,1,t−1x

γ−1
12
i,2,t−1x

γ−1
13
i,3,t−1

)σ̃(α2(σ−1)+β2σ) (
x
γ−1
11
j,1,t−1x

γ−1
12
j,2,t−1x

γ−1
13
j,3,t−1

)σ̃(α2σ+β2(σ−1))

×
(
x
γ−1
11
j,1,tx

γ−1
12
j,2,tx

γ−1
13
j,3,t

)σ̃(1+α1σ+β1(σ−1)) (
x
γ−1
21
j,1,tx

γ−1
22
j,2,tx

γ−1
23
j,3,t

)(1−σ)σ̃

(A.9)

xi,2,t =

N∑
j=1

µ−θij,t

(
x
γ−1
21
j,1,tx

γ−1
22
j,2,tx

γ−1
23
j,3,t

)θ (
x
γ−1
21
j,1,t+1x

γ−1
22
j,2,t+1x

γ−1
23
j,3,t+1

)δθ
(A.10)

xi,3,t =

N∑
j=1

µ−θji,t

(
x
γ−1
11
j,1,t−1x

γ−1
12
j,2,t−1x

γ−1
13
j,3,t−1

)(
x
γ−1
31
j,1,tx

γ−1
32
j,2,tx

γ−1
33
j,3,t

)−θ (
x
γ−1
21
i,1,t+1x

γ−1
22
i,2,t+1x

γ−1
23
i,3,t+1

)δθ
, (A.11)

where (with some abuse of notation), we denote the {m,n} element of the 3× 3 matrix Γ−1 as γ−1
mn.

As claimed above, the system of equations (A.9)-(A.11) are a special case of equation (18), where:

xi,h,t =

N∑
j=1

Kij,h,t

H∏
h′=1

x
ε
j,t

h,h′

j,h′,tx
ε
j,t+1

h,h′

j,h′,t+1x
εi,t+1

h,h′

i,h′,t+1x
ε
j,t−1

h,h′

j,h′,t−1x
εi,t−1

h,h′

i,h′,t−1, (A.12)

where the matrices Ej,t, Ej,t+1, Ei,t+1, Ej,t−1, and Ei,t−1 are defined as above, as required.

A.3 Proof of Proposition 1

We first restate the proposition:

Proposition 1. Consider any initial population {Li0} and time-invariant geography {Āi > 0, ūi > 0, τij =
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τji, µij > 0}. Suppose that δ = 0 and ρ (|Ej,t|) < 1, where Ej,t is defined in Corollary 1, so that the dynamic
equilibrium is unique. Then the following relationship holds:lnχL,t

lnχV,t
lnχΠ,t

 ≤ ∣∣Γ−1
∣∣ (I− ∣∣Ej,t

∣∣)−1
G |Γ|

lnχL,t−1

lnχV,t−1

lnχΠ,t−1

 , (A.13)

and G is a 3-by-3 matrix whose first two rows are strictly positive (with values that depend on the parameters
α1, α2, β1, β2, σ and θ, as fully defined below and whose second row consists entirely of zeroes.

Proof. In the case where δ = 0 so that Vit = Wit, the equilibrium of the dynamic model corresponds to
the set of endogenous variables {Lit, Vit,Πit} that solve the following system of equations given exogenous
parameters

{
Āit, ūit, τij , µij , Lit−1

}
.

We have the (combined) trade equation:

L
σ̃(1−α1(σ−1)−β1)
it V σ̃σit =

∑
j

FijL
σ̃(1+(σ−1)β1+α1σ)
jt V

(1−σ)σ̃
jt (Li,t−1)

σ̃(α2(σ−1)+β2σ)
(Lj,t−1)

σ̃(α2σ+β2(σ−1))
,

(A.14)
the value of living in a particular location (multilateral migration resistance):

Πθ
it =

∑
j

µ−θij V
θ
jt, (A.15)

and the population law of motion:

LitV
−θ
it =

∑
j

µ−θji Π−θjt Ljt−1, (A.16)

We take as given the population at time t = 0, i.e. {Li0}. The proof of Proposition 1 proceeds in five steps.

Step #1: Redefine the system We begin by redefining the left-hand side of the equilibrium
equations:

xit ≡ Lσ̃(1−α1(σ−1)−β1)
it V σ̃σit

yit ≡ Πθ
it

zit ≡ LitV −θit ,

or equivalently: lnxit
ln yit
ln zit

 =

σ̃ (1− α1 (σ − 1)− β1) σ̃σ 0
0 0 θ
1 −θ 0


︸ ︷︷ ︸

=Γ

lnLit
lnVit
ln Πit

 ⇐⇒

Γ−1

lnxit
ln yit
ln zit

 =

lnLit
lnVit
ln Πit

 .
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With a slight abuse of notation, let γ−1
kl denote the 〈k, l〉th component of Γ−1. We can then re-write the

system of equations as:

xit =
∑
j

Fij

(
x
γ−1
11
jt y

γ−1
12
jt z

γ−1
13
jt

)σ̃(1+(σ−1)β1+α1σ) (
x
γ−1
21
jt y

γ−1
22
jt z

γ−1
23
jt

)(1−σ)σ̃ (
x
γ−1
11
jt−1y

γ−1
12
jt−1z

γ−1
13
jt−1

)σ̃(α2σ+β2(σ−1))

×
(
x
γ−1
11
it−1y

γ−1
12
it−1z

γ−1
13
it−1

)σ̃(α2(σ−1)+β2σ)

yit =
∑
j

µ−θij

(
x
γ−1
21
jt y

γ−1
22
jt z

γ−1
23
jt

)θ
zit =

∑
j

µ−θji

(
x
γ−1
31
jt y

γ−1
32
jt z

γ−1
33
jt

)−θ (
x
γ−1
11
jt−1y

γ−1
12
jt−1z

γ−1
13
jt−1

)1

,

or, equivalently:

xit =
∑
j

Fijx
A11
jt yA12

jt zA13
jt

(
x
γ−1
11
it−1y

γ−1
12
it−1z

γ−1
13
it−1

)σ̃(α2(σ−1)+β2σ) (
x
γ−1
11
jt−1y

γ−1
12
jt−1z

γ−1
13
jt−1

)σ̃(α2σ+β2(σ−1))

(A.17)

yit =
∑
j

µ−θij x
A21
jt yA22

jt zA23
jt (A.18)

zit =
∑
j

µ−θji x
A31
jt yA32

jt zA33
jt x

γ−1
11
jt−1y

γ−1
12
jt−1z

γ−1
13
jt−1, (A.19)

where:

A =

σ̃ (1 + (σ − 1)β1 + α1σ) (1− σ) σ̃ 0
0 θ 0
0 0 −θ


︸ ︷︷ ︸

=B

Γ−1.

Note that A = Ej,t, as defined in Proposition 1. Equations (A.17)-(A.19) constitute the redefined system.

Step #2: Re-write the system in terms of changes We can further re-write equations
(A.17)-(A.19) as:

xit =
∑
j

Fijx
A11
jt yA12

jt zA13
jt

(
x
γ−1
11
jt−1y

γ−1
12
jt−1z

γ−1
13
jt−1

)σ̃(α2σ+β2(σ−1)) (
x
γ−1
11
it−1y

γ−1
12
it−1z

γ−1
13
it−1

)σ̃(α2(σ−1)+β2σ)

⇐⇒

xit =
∑
j

Fij

(
xjt
xj,t−1

)A11
(

yjt
yj,t−1

)A12
(

zj,t
zj,t−1

)A13
((

xj,t−1

xj,t−2

)γ−1
11
(
yj,t−1

yj,t−2

)γ−1
12
(
zj,t−1

zj,t−2

)γ−1
13

)σ̃(α2σ+β2(σ−1))

×

((
xi,t−1

xi,t−2

)γ−1
11
(
yi,t−1

yi,t−2

)γ−1
12
(
zi,t−1

zi,t−2

)γ−1
13

)σ̃(α2(σ−1)+β2σ)

× xA11
j,t−1y

A12
j,t−1z

A13
j,t−1

(
x
γ−1
11
jt−2y

γ−1
12
jt−2z

γ−1
13
jt−2

)σ̃(α2σ+β2(σ−1))

×
(
x
γ−1
11
it−2y

γ−1
12
it−2z

γ−1
13
it−2

)σ̃(α2(σ−1)+β2σ)

, (A.20)

or equivalently,
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yit =
∑
j

µ−θij x
A21
jt yA22

jt zA23
jt ⇐⇒

yit =
∑
j

µ−θij

(
xjt
xj,t−1

)A21
(

yjt
yj,t−1

)A22
(

zj,t
zj,t−1

)A23

xA21
j,t−1y

A22
j,t−1z

A23
j,t−1. (A.21)

zit =
∑
j

µ−θji x
A31
jt yA32

jt zA33
jt x

γ−1
11
jt−1y

γ−1
12
jt−1z

γ−1
13
jt−1 ⇐⇒

zit =
∑
j

µ−θji

(
xjt
xj,t−1

)A31
(

yj,t
yj,t−1

)A32
(

zj,t
zj,t−1

)A33
(
xj,t−1

xj,t−2

)γ−1
11
(
yj,t−1

yj,t−2

)γ−1
12
(
zj,t−1

zj,t−2

)γ−1
13

× xA31
j,t−1y

A32
j,t−1z

A33
j,t−1x

γ−1
11
jt−2y

γ−1
12
jt−2z

γ−1
13
jt−2. (A.22)

Equations (A.20)-A.22 are then the redefined system in changes.

Step #3: Bound the changes Define the following constants:

Mx,t ≡ max
j

xj,t
xj,t−1

, My,t ≡ max
j

yj,t
yj,t−1

, Mz,t ≡ max
j

zj,t
zj,t−1

mx,t ≡ min
j

xj,t
xj,t−1

, my,t ≡ min
j

yj,t
yj,t−1

, mz,t ≡ min
j

zj,t
zj,t−1

µx,t ≡
Mx,t

mx,t
, µy,t ≡

My,t

my,t
, µz,t ≡

Mz,t

mz,t
.

Let us bound {xit} from above first:

xit =
∑
j

Fij

(
xjt
xj,t−1

)A11
(

yjt
yj,t−1

)A12
(

zj,t
zj,t−1

)A13
((

xj,t−1

xj,t−2

)γ−1
11
(
yj,t−1

yj,t−2

)γ−1
12
(
zj,t−1

zj,t−2

)γ−1
13

)σ̃(α2σ+β2(σ−1))

×

((
xi,t−1

xi,t−2

)γ−1
11
(
yi,t−1

yi,t−2

)γ−1
12
(
zi,t−1

zi,t−2

)γ−1
13

)σ̃(α2(σ−1)+β2σ)

× xA11
j,t−1y

A12
j,t−1z

A13
j,t−1

(
x
γ−1
11
jt−2y

γ−1
12
jt−2z

γ−1
13
jt−2

)σ̃(α2σ+β2(σ−1)) (
x
γ−1
11
it−2y

γ−1
12
it−2z

γ−1
13
it−2

)σ̃(α2(σ−1)+β2σ)

=⇒

xit
xi,t−1

≤
M

A111{A11≥0}
x,t

m
−A111{A11<0}
x,t

M
A121{A12≥0}
y,t

m
−A121{A12<0}
y,t

M
A131{A13≥0}
z,t

m
−A131{A13<0}
z,t

M
γ−1
11 σ̃(α2σ+β2(σ−1))1{γ−1

11 σ̃(α2σ+β2(σ−1))≥0}
x,t−1

m
−γ−1

11 σ̃(α2σ+β2(σ−1))1{γ−1
11 σ̃(α2σ+β2(σ−1))<0}

x,t−1

×
M

γ−1
11 σ̃(α2(σ−1)+β2σ)1{γ−1

11 σ̃(α2(σ−1)+β2σ)≥0}
x,t−1

m
−γ−1

11 σ̃(α2(σ−1)+β2σ)1{γ−1
11 σ̃(α2(σ−1)+β2σ)<0}

x,t−1

M
γ−1
12 σ̃(α2σ+β2(σ−1))1{γ−1

12 σ̃(α2σ+β2(σ−1))≥0}
y,t−1

m
−γ−1

12 σ̃(α2σ+β2(σ−1))1{γ−1
12 σ̃(α2σ+β2(σ−1))<0}

y,t−1

×
M

γ−1
12 σ̃(α2(σ−1)+β2σ)1{γ−1

12 σ̃(α2(σ−1)+β2σ)≥0}
y,t−1

m
−γ−1

12 σ̃(α2(σ−1)+β2σ)1{γ−1
12 σ̃(α2(σ−1)+β2σ)<0}

y,t−1

M
γ−1
13 σ̃(α2σ+β2(σ−1))1{γ−1

13 σ̃(α2σ+β2(σ−1))≥0}
z,t−1

m
−γ−1

13 σ̃(α2σ+β2(σ−1))1{γ−1
13 σ̃(α2σ+β2(σ−1))<0}

z,t−1

×
M

γ−1
13 σ̃(α2(σ−1)+β2σ)1{γ−1

13 σ̃(α2(σ−1)+β2σ)≥0}
z,t−1

m
−γ−1

13 σ̃(α2(σ−1)+β2σ)1{γ−1
13 σ̃(α2(σ−1)+β2σ)<0}

z,t−1

. (A.23)
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Similarly, we can bound {xi,t} from below:

xit =
∑
j

Fij

(
xjt
xj,t−1

)A11
(

yjt
yj,t−1

)A12
(

zj,t
zj,t−1

)A13
((

xj,t−1

xj,t−2

)γ−1
11
(
yj,t−1

yj,t−2

)γ−1
12
(
zj,t−1

zj,t−2

)γ−1
13

)σ̃(α2σ+β2(σ−1))

×

((
xi,t−1

xi,t−2

)γ−1
11
(
yi,t−1

yi,t−2

)γ−1
12
(
zi,t−1

zi,t−2

)γ−1
13

)σ̃(α2(σ−1)+β2σ)

xA11
j,t−1y

A12
j,t−1z

A13
j,t−1

(
x
γ−1
11
jt−2y

γ−1
12
jt−2z

γ−1
13
jt−2

)σ̃(α2σ+β2(σ−1))

×
(
x
γ−1
11
it−2y

γ−1
12
it−2z

γ−1
13
it−2

)σ̃(α2(σ−1)+β2σ)

=⇒

xit
xi,t−1

≥
m
A111{A11≥0}
x,t

M
−A111{A11<0}
x,t

m
A121{A12≥0}
y,t

M
−A121{A12<0}
y,t

m
A131{A13≥0}
z,t

M
−A131{A13<0}
z,t

m
γ−1
11 σ̃(α2σ+β2(σ−1))1{γ−1

11 σ̃(α2σ+β2(σ−1))≥0}
x,t−1

M
−γ−1

11 σ̃(α2σ+β2(σ−1))1{γ−1
11 σ̃(α2σ+β2(σ−1))<0}

x,t−1

×
m
γ−1
11 σ̃(α2(σ−1)+β2σ)1{γ−1

11 σ̃(α2(σ−1)+β2σ)≥0}
x,t−1

M
−γ−1

11 σ̃(α2(σ−1)+β2σ)1{γ−1
11 σ̃(α2(σ−1)+β2σ)<0}

x,t−1

m
γ−1
12 σ̃(α2σ+β2(σ−1))1{γ−1

12 σ̃(α2σ+β2(σ−1))≥0}
y,t−1

M
−γ−1

12 σ̃(α2σ+β2(σ−1))1{γ−1
12 σ̃(α2σ+β2(σ−1))<0}

y,t−1

×
m
γ−1
12 σ̃(α2(σ−1)+β2σ)1{γ−1

12 σ̃(α2(σ−1)+β2σ)≥0}
y,t−1

M
−γ−1

12 σ̃(α2(σ−1)+β2σ)1{γ−1
12 σ̃(α2(σ−1)+β2σ)<0}

y,t−1

m
γ−1
13 σ̃(α2σ+β2(σ−1))1{γ−1

13 σ̃(α2σ+β2(σ−1))≥0}
z,t−1

M
−γ−1

13 σ̃(α2σ+β2(σ−1))1{γ−1
13 σ̃(α2σ+β2(σ−1))<0}

z,t−1

×
m
γ−1
13 σ̃(α2(σ−1)+β2σ)1{γ−1

13 σ̃(α2(σ−1)+β2σ)≥0}
z,t−1

M
−γ−1

13 σ̃(α2(σ−1)+β2σ)1{γ−1
13 σ̃(α2(σ−1)+β2σ)<0}

z,t−1

. (A.24)

Combining equations (A.23) and (A.24) (dividing the maximum by the minimum) implies:

µx,t ≤µ|A11|
x,t µ

|A12|
y,t µ

|A13|
z,t

× µ|γ
−1
11 σ̃(α2σ+β2(σ−1))|+|γ−1

11 σ̃(α2(σ−1)+β2σ)|
x,t−1 µ

|γ−1
12 σ̃(α2σ+β2(σ−1))|+|γ−1

12 σ̃(α2(σ−1)+β2σ)|
y,t−1

× µ|γ
−1
13 σ̃(α2σ+β2(σ−1))|+|γ−1

13 σ̃(α2(σ−1)+β2σ)|
z,t−1 .

Proceeding similarly for {yit} and {zit} yield, respectively:

µy,t ≤ µ|A21|
x,t µ

|A22|
y,t µ

|A23|
z,t

µz,t ≤ µ|A31|
x,t µ

|A32|
y,t µ

|A33|
z,t µ

|γ−1
11 |

x,t−1µ
|γ−1

12 |
y,t−1µ

|γ−1
13 |

z,t−1.

Step #4: Combining the bounds Combining the three inequalities and taking logs yields:lnµx,t
lnµy,t
lnµz,t

 ≤

|A11| |A12| |A13|
|A21| |A22| |A23|
|A31| |A32| |A33|


︸ ︷︷ ︸

≡|A|

lnµx,t
lnµy,t
lnµz,t

+ G

lnµx,t−1

lnµy,t−1

lnµz,t−1

 ⇐⇒

(I− |A|)

lnµx,t
lnµy,t
lnµz,t

 ≤ G

lnµx,t−1

lnµy,t−1

lnµz,t−1

 , (A.25)

for all t > 0, where G is a 3 × 3 matrix whose first row has elements G1l =
∣∣γ−1

1l σ̃ (α2σ + β2 (σ − 1))
∣∣ +∣∣γ−1

1l σ̃ (α2 (σ − 1) + β2σ)
∣∣, whose third row has elements G3l =

∣∣γ−1
1l

∣∣, and whose second row is a vector of
zeroes.

Because ρ (|A|) < 1, (I− |A|) is an M -matrix and is invertible, which in turn implies that its inverse

(I− |A|)−1
is strictly positive. As a result, we can multiply both sides of equation (A.25) by (I− |A|)−1
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while preserving the inequality, which yields:lnµx,t
lnµy,t
lnµz,t

 ≤ (I− |A|)−1
G

lnµx,t−1

lnµy,t−1

lnµz,t−1

 . (A.26)

Step #5: Converting the bounds to bounds in {Lit, Vit,Πit} space Finally, we convert
the bound (A.26) back into {Lit, Vit,Πit} space. To do so, recall that:

Γ−1

lnxit
ln yit
ln zit

 =

lnLit
lnVit
ln Πit


so that, for example, we have:

µL,t ≡
maxi Li,t/Li,t−1

mini Li,t/Li,t−1
⇐⇒

µL,t =
maxi x

γ−1
11
i,t y

γ−1
12
i,t z

γ−1
13
i,t /x

γ−1
11
i,t−1y

γ−1
12
i,t−1z

γ−1
13
i,t−1

mini x
γ−1
11
i,t y

γ−1
12
i,t z

γ−1
13
i,t /x

γ−1
11
i,t−1y

γ−1
12
i,t−1z

γ−1
13
i,t−1

=⇒

µL,t ≤
maxi

(
(xi,t/xi,t−1)

γ−1
11

)
×maxi

(
(yi,t/yi,t−1)

γ−1
12

)
×maxi

(
(zi,t/zi,t−1)

γ−1
13

)
mini

(
(xi,t/xi,t−1)

γ−1
11

)
×mini

(
(yi,t/yi,t−1)

γ−1
12

)
×mini

(
(zi,t/zi,t−1)

γ−1
13

) ⇐⇒

µL,t ≤
(

maxi (xi,t/xi,t−1)

mini (xi,t/xi,t−1)

)|γ−1
11 |
×
(

maxi (yi,t/yi,t−1)

mini (yi,t/yi,t−1)

)|γ−1
12 |
×
(

maxi (zi,t/zi,t−1)

mini (zi,t/zi,t−1)

)|γ−1
13 |
⇐⇒

µL,t ≤ µ
|γ−1

11 |
x,t µy,t

|γ−1
12 |µ|γ

−1
13 |

z,t .

Proceeding similarly for µV,t and µΠ,t yields:lnµL,t
lnµV,t
lnµΠ,t

 ≤ ∣∣Γ−1
∣∣lnµx,t

lnµy,t
lnµz,t

 . (A.27)

An identical argument starting with the expression

lnxit
ln yit
ln zit

 = Γ

lnLit
lnVit
ln Πit

 yields:

lnµx,t
lnµy,t
lnµz,t

 ≤ |Γ|
 lnµL,t

lnµW,t
lnµΠ,t

 . (A.28)

Substituting bounds (A.27) and (A.28) into bound (A.26) and recalling that A = E(j,t) yields:lnµL,t
lnµV,t
lnµΠ,t

 ≤ ∣∣Γ−1
∣∣ (I− ∣∣∣E(j,t)

∣∣∣)−1

G |Γ|

lnµL,t−1

lnµV,t−1

lnµΠ,t−1

 ,

as required.

A.4 Proof of Proposition 2

We first restate the proposition:
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Proposition 2. For any time-invariant geography
{
Āi > 0, ūi > 0, τij = τji, µij = µji

}
, there exists a unique

steady-state equilibrium if:
ρ (B) < 1,

where

B ≡


∣∣∣ 1−σθ−βss+αssσ+βssσ+ 1

θ
σ
θ+1−αss(σ−1)−βssσ

∣∣∣ ∣∣∣∣ (1+δ)(αss+1)(σ−1
θ )

σ
θ+1−αss(σ−1)−βssσ

∣∣∣∣∣∣∣∣ (2σ−1)/(σ−1)

(σθ+1−αss(σ−1)−βssσ)

∣∣∣∣ ∣∣∣ 1−αss(σ−1)−βssσ−δ σθ
σ
θ+1−αss(σ−1)−βssσ

∣∣∣


and αss ≡ α1 + α2 and βss ≡ β1 + β2.
Moreover, if ρ (B) > 1, then there exist many geographies for which there are multiple steady-states at

each geography.55

Proof. We now characterize the steady state equilibrium. Imposing the symmetry of trade costs (see Propo-
sition 1), in the steady state equations (13)-(17) become:

Wσσ̃
i L

σ̃(1−(α1+α2)(σ−1)−σ(β1+β2))
i =

∑
j

τ1−σ
ij

(
Āiūj

)(σ−1)σ̃ (
ūiĀj

)σ̃σ
W

(1−σ)σ̃
j L

σ̃(1+(β1+β2)(σ−1)+σ(α1+α2))
j

(A.29)
Vi = WiΠ

δ
i (A.30)

Πθ
i ≡

∑
j

µ−θij V
θ
j (A.31)

LiV
−θ
i =

∑
j

µ−θji Π−θj Lj . (A.32)

Much like the symmetry of trade costs allowed us to simplify the equilibrium spatial distribution of economic
activity in each period, the symmetry of migration costs allows us to simplify the steady state relationship
between the distribution of labor, the value function of residing in each location, and option value of remaining
in that location. In particular, if migration costs are symmetric and we are in the steady-state, we have:∑
i Lij =

∑
j Lji, Lij = Mijgidj , and Mij = Mji. So then it will be the case that:

gi ∝ di.

In our case, this implies:

ViΠiL
− 1
θ

i = Ω2,

which recall is our measure of steady-state welfare.
This simplifies our system of equations as follows:

W σ̃σ
i L

σ̃(1−(α1+α2)(σ−1)−σ(β1+β2))
i =

∑
j

τ1−σ
ij Ā

(σ−1)σ̃
i ūσ̃i u

(σ−1)σ̃
j Āσ̃σj W

−(σ−1)σ̃
j L

σ̃(1+(α1+α2)σ+(β1+β2)(σ−1))
j

L
1

1+δ

i W
− θ

1+δ

i =
(
Ω2
)−θ( 1−δ

1+δ )∑
j

µ−θij W
θ

1+δ

j L
δ

1+δ

j

Let us order the endogenous variables as L,W . Define α̃ ≡ α1 + α2 and β̃ ≡ β1 + β2 Then the matrix
of LHS coefficients becomes:

Γss ≡

(
σ̃
(

1− α̃ (σ − 1)− β̃σ
)

σ̃σ
1

1+δ − θ
1+δ

)
,

55If ρ (B) = 1, there exists at most one steady-state.
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and the matrix on the RHS coefficients becomes:

Ãss ≡

(
σ̃
(

1 + α̃σ + β̃ (σ − 1)
)
− (σ − 1) σ̃

δ
1+δ

θ
1+δ

)
.

Hence, we have:
Ass ≡ ÃssΓ

−1
ss .

Defining B ≡ ÃssΓ
−1
ss , from Theorem 1 of Allen et al. (2021), there exists a unique steady state if:

ρ (B) < 1,

(and at most one steady state if ρ (B) = 1; see part (ii) of Theorem 1 of Allen et al. (2021) and Remark 2),
as required.

The second part of the proposition claims that there exists a geography for which if

ρ (B) > 1,

then there exist multiple equilibria. For readability, we present it this result as a general lemma, under which
our model clearly falls:

Lemma 1. Consider the following mathematical system:

xi,1 = λ1

N∑
j=1

Kij,1x
a11
j,1 x

a12
j,2 (A.33)

xi,2 = λ2

N∑
j=1

Kij,2x
a21
j,1 x

a22
j,2 , (A.34)

where {Kij,k}k∈{1,2}i,j∈{1,...,N} are the “kernels” of (exogenous) bilateral frictions, {alk}l,k∈{1,2} are (exogenous)

elasticities, {xi,k}k∈{1,2}i∈{1,...,N} are (endogenous) strictly positive vectors and {λk}k∈{1,2} are either endogenous

scalars determined by additional constraints or are exogenous. If the spectral radius of the 2 × 2 matrix

Ap ≡ [|akl|] is greater than one, then there exist kernels {Kij,k}k∈{1,2}i,j∈{1,...,N} such that there are multiple

solutions to equations (A.33) and (A.34).

The proof proceeds by construction. We begin by performing two transformations of the problem that
simplifies the setup. First, we absorb the scalars into the endogenous variables. To do so, define yi,k =(
λ
dk,1
1 λ

dk,2
2

)
xi,k, where D = [dkl] ≡ − (I−A)

−1
. Note that this is well defined as long as the spectral

radius of A is not equal to one. It is straightforward to then show that the following equations:

yi,1 =
∑
j

Kij,1y
a11
j,1 y

a12
j,2

yi,2 =
∑
j

Kij,2y
a21
j,1 y

a22
j,2

are equivalent to equations (A.33) and (A.34). To see this, substitute in the definition of yi,k, yielding:(
λd111 λd122

)
xi,1 =

∑
j

Kij,1x
a11
j,1

(
λd111 λd122

)a11
xa12j,2

(
λd211 λd222

)a12
(
λd211 λd222

)
xi,2 =

∑
j

Kij,2y
a21
j,1

(
λd111 λd122

)a21
xa22j,2

(
λd211 λd222

)a22
,
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which, rearranging, yields:

xi,1 = λ−d11+a11d11+a12d21
1 λ−d12+a11d12+a12d22

2

∑
j

Kij,1x
a11
j,1 x

a12
j,2

xi,2 = λ−d21+a21d11+a22d21
1 λ−d22+a21d12+a22d22

2

∑
j

Kij,2x
a21
j,1 x

a22
j,2 ,

which, given the definition of D, is equivalent to equations (A.33) and (A.34) as claimed.56

The second transformation is closely related to the“exact hat” algebra pioneered by Dekle et al. (2008) in
the field of trade and considers a “normalized” system of equations around an observed equilibrium. Suppose
we observe a steady-state solution {yi,k}i∈S,k∈{1,2} that satisfies:

yi,1 =
∑
j

Kij,1y
a11
j,1 y

a12
j,2

yi,2 =
∑
j

Kij,2y
a21
j,1 y

a22
j,2 .

We are interested in knowing whether there exists a different steady-state solution {xi,k}i∈S,k∈{1,2} that also

satisfies the same equations:

xi,1 =
∑
j

Kij,1x
a11
j,1 x

a12
j,2

xi,2 =
∑
j

Kij,2x
a21
j,1 x

a22
j,2

Define zi,k ≡ xi,k
yi,k

and note that the previous equations can be written as:

zi,1 =
∑
j

Fij,1z
a11
j,1 z

a12
j,2 (A.35)

zi,2 =
∑
j

Fij,2z
a21
j,1 z

a22
j,2 , (A.36)

where Fij,k ≡
(
Kij,k
yi,k

yak1j,1 y
ak2
j,2

)
. By construction, note that zi,k = 1 is a solution to this system of equations.

Moreover, the matrices Fk are stochastic, i.e.:∑
j

Fij,k = 1 ∀i ∈ {1, ..., N} k ∈ {1, 2} .

In what follows, we will search for stochastic matrices Fk that have two solutions: one in which zi,k = 1 for
all i ∈ {1, .., N} and k ∈ {1, 2} and another in which there exists a zi,k 6= 1.

It turns out to do this requires N = 4. Choose any mk < 1 < Mk for k ∈ {1, 2}. Then we will construct
a set of kernels that have the following solution:

z1,1 z1,2

z2,1 z2,2

z3,1 z3,2

z4,1 z4,2

 =


m

1{a11>0}
1 M

1{a11≤0}
1 ; m

1{a12>0}
2 M

1{a12≤0}
2

m
1{a21>0}
1 M

1{a21≤0}
1 ; m

1{a22>0}
2 M

1{a22≤0}
2

m
1{a11≤0}
1 M

1{a11>0}
1 ; m

1{a12≤0}
2 M

1{a12>0}
2

m
1{a21≤0}
1 M

1{a21>0}
1 ; m

1{a22≤0}
2 M

1{a22>0}
2

 . (A.37)

Before constructing the kernel, we note the following helpful properties.

56This follows because exp ((−D + AD) lnλ) = exp ((− (I−A) D) lnλ) = λ.
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First, define ln m ≡
(

lnm1

lnm2

)
, ln M ≡

(
lnM1

lnM2

)
, and the indicator matrix

P ≡
(

1 {a11 > 0} 1 {a12 > 0}
1 {a21 > 0} 1 {a22 > 0}

)

(for “positive”); and E ≡
(

1 1
1 1

)
. Then note that we can bound m and M as follows:

(A ◦P) ln m + (A ◦ (E−P)) ln M ≤ ln m ≤ ln M ≤ (A ◦ (E−P)) ln m + (A ◦P) ln M ⇐⇒
(A ◦P) ln m + (A− (A◦P)) ln M ≤ ln m ≤ ln M ≤ (A− (A◦P)) ln m + (A ◦P) ln M ⇐⇒

A ln M− (A ◦P) (ln M− ln m) ≤ ln m ≤ ln M ≤ A ln m + (A◦P) (ln M− ln m) ⇐⇒
ln B− (A ◦P) (ln M− ln m) ≤ ln m ≤ ln M ≤ ln b + (A◦P) (ln M− ln m) ⇐⇒

ln B− ln D ≤ ln m ≤ ln M ≤ ln b + ln D, (A.38)

where B =

(
Ma11

1 Ma12
2

Ma21
1 Ma22

2

)
, ln D ≡ (A ◦P) (ln M− ln m) =

ln
(
M1

m1

)a111{a11>0} (
M2

m2

)a121{a12>0}

ln
(
M1

m1

)a211{a21>0} (
M2

m2

)a221{a22>0}

 and

Dk ≡ exp ((ln D)k). We denote mk = Bk
Dk
, M̄k = bkDk as the lower and upper bounds for mk and Mk (the

values zj,k can take) from inequality A.38.
Second, we note the existence and uniqueness of weights that can be used to relate the zj,k (j ∈

{1, 2, 3, 4} , k ∈ {1, 2}) variables to other endogenous objects. In what follows, we define those weights
for z1.1, but the corresponding results also hold for all other j, k. Note that by definition

z1,1 = m
1{a11>0}
1 M

1{a11≤0}
1

= m1

(
M1

m1

)1{a11≤0}

= M1

(
m1

M1

)1{a11>0}

and similarly,

z1,2 = m
1{a12>0}
2 M

1{a12≤0}
2

= m2

(
M2

m2

)1{a12≤0}

= M2

(
m2

M2

)1{a12>0}

Therefore,

za111,1 z
a12
1,2 = Ma11

1 Ma12
2

(
m1

M1

)a111{a11>0}(
m2

M2

)a121{a12>0}

= m1

We can similarly work out the following:

za112,1 z
a12
2,2 = Ma11

1 Ma12
2

(
m1

M1

)a111{a21>0}(
m2

M2

)a121{a22>0}

= m1

(
m1

M1

)a11(1{a21>0}−1{a11≤0})(
m2

M2

)a12(1{a22>0}−1{a12≤0})
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za113,1 z
a12
3,2 = Ma11

1 Ma12
2

(
m1

M1

)a111{a11≤0}(
m2

M2

)a121{a12≤0}

= ma11
1 ma12

2

(
M1

m1

)a111{a11>0}(
M1

m1

)a121{a12>0}

= M̄1

za114,1 z
a12
4,2 = Ma11

1 Ma12
2

(
m1

M1

)a111{a21≤0}(
m2

M2

)q121{a22≤0}

= M̄1

(
m1

M1

)a11(1{a11>0}−1{a21>0})(
m2

M2

)a12(1{a12>0}−1{a22>0})

From inequality A.38, we note that ∃Pk, Qk ∈ [0, 1] such that

mk = Pkmk + (1− Pk) M̄k (A.39)

Mk = Qkmk + (1−Qk) M̄k (A.40)

And from the definition of z1.1 in A.37:

z1,1 = 1 {a11 > 0}mk + 1 {a11 ≤ 0}Mk =⇒
= 1 {a11 > 0}

(
Pkmk + (1− Pk) M̄k

)
+ 1 {a11 ≤ 0}

(
Qkmk + (1−Qk) M̄k

)
= (1 {a11 > 0}Pk + 1 {a11 ≤ 0}Qk)mk + (1 {a11 > 0} (1− Pk) + 1 {a11 ≤ 0} (1−Qk)) M̄k

= ωAkmk +
(
1− ωAk

)
M̄k

We can similarly solve for the rest of the kernels of zj,k. With all of these properties established, we have
enough information to define our kernels:

F1 =


ωA1 0 1− ωA1 0
ωB1 0 1− ωB1 0
ωC1 0 1− ωC1 0
ωD1 0 1− ωD1 0



F2 =


0 ωA2 0 1− ωA2
0 ωB2 0 1− ωB2
0 ωC2 0 1− ωC2
0 ωD2 0 1− ωD2

 .

Note that the zi,k = 1 for all i ∈ {1, .., 4} and k ∈ {1, 2} trivially satisfies the equilibrium system. But it
is also straightforward to confirm that the proposed solution (A.37) is also an equilibrium. This is because
every equation has a term of mk and M̄k, which we know every endogenous variable is a weighted average
of (see equations (A.39) and (A.40)).

Finally, we mention that there are many geographies that deliver this multiplicity for two reasons. First,
the argument above holds for any choice of mk < 1 < Mk. Second, it is straightforward to show that
perturbations of the above kernel also generate multiple equilibria. Suppose we considered the perturbed
system of equations:

F1 =


ωA1 − κε δε 1− ωA1 − (1− κ) ε (1− δ) ε
ωB1 0 1− ωB1 0
ωC1 0 1− ωC1 0
ωD1 0 1− ωD1 0

 ,

where ε > 0, κ ∈ [0, 1] and δ ∈ [0, 1]. The only restriction we place is that ωA1 − κε > 0 ⇐⇒ κε < ωA1 and(
1− ωA1 − (1− κ) ε

)
> 0 ⇐⇒ ε (1− κ) < 1−ωA1 . Note that both of these equations will hold for sufficiently

small ε, as ωAk = (1 {a11 > 0}Pk + 1 {a11 ≤ 0}Qk) and Pk ∈ [0, 1] and Qk ∈ [0, 1]. In what follows, we show
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for any choice of ε > 0 (that is sufficiently small to satisfy these inequalities) and any choice of δ ∈ [0, 1],
there exists a κ ∈ [0, 1] that ensures the multiplicity still holds.

Then the relevant equation becomes:

z1,1 =
(
ωA1 − κε

)
m1 + δεm1

(
m1

M1

)a11(1{a21>0}−1{a11≤0})(
m2

M2

)a12(1{a22>0}−1{a12≤0})

+
(
1− ωA1 − (1− κ) ε

)
M̄1 + (1− δ) εM̄1

(
m1

M1

)a11(1{a11>0}−1{a21>0})(
m2

M2

)a12(1{a12>0}−1{a22>0})

Since z1.1 = ωA1 m1 +
(
1− ωA1

)
M̄1, we have

κεm1 + (1− κ) εM̄1 =δε

(
m1

(
m1

M1

)a11(1{a21>0}−1{a11≤0})(
m2

M2

)a12(1{a22>0}−1{a12≤0})
)

+ (1− δ) εM̄1

(
m1

M1

)a11(1{a11>0}−1{a21>0})(
m2

M2

)a12(1{a12>0}−1{a22>0})

=⇒

κm1 + (1− κ) M̄1 = δGm1 + (1− δ) 1

G
M̄1

where G ≡
(
m1

M1

)a11(1{a21>0}−1{a11≤0}) (
m2

M2

)a12(1{a22>0}−1{a12≤0})
. Note that G ≥ 1. Recall also that m1

and M̄1 are the lowest and highest values that can be achieved given the signs of the exponents. Since G ≥ 1:

m1 ≤ Gm1,
1

G
M̄1 ≤ M̄1,

Note also that Gm1 ≤ M̄1 and m1 ≤ 1
GM̄1. As a result, there exist constants (weights) λ1 ∈ [0, 1] and

λ2 ∈ [0, 1] such that:
Gm1 = λ1m1 + (1− λ1) M̄1

1

G
M̄1 = λ2m1 + (1− λ2) M̄1

We now return to the above equation:

κm1 + (1− κ) M̄1 = δGm1 + (1− δ) 1

G
M̄1 ⇐⇒

κm1 + (1− κ) M̄1 = δ
(
λ1m1 + (1− λ1) M̄1

)
+ (1− δ)

(
λ2m1 + (1− λ2) M̄1

)
⇐⇒

κm1 + (1− κ) M̄1 = (δλ1 + (1− δ)λ2)m1 + (δ (1− λ1) + (1− δ) (1− λ2)) M̄1 (A.41)

Choose κ ≡ δλ1 + (1− δ)λ2. Then

1− κ = 1− δλ1 − (1− δ)λ2 ⇐⇒
1− κ = 1 + δ − δ − δλ1 − (1− δ)λ2 ⇐⇒
1− κ = δ (1− λ1) + (1− δ) (1− λ2) ,

so that equation (A.41) holds. Hence, for any choice of δ, we can find a κ that ensures the equilibrium still
holds. Note that there is nothing in this argument that is particular to z1,1. As a result, we can construct
examples of multiple equilibria of the form:

F1 =


ωA1 − κA1 εA1 ; δA1 ε

A
1 ; 1− ωA1 −

(
1− κA1

)
εA1 ;

(
1− δA1

)
εA1

ωB1 − κB1 εB1 ; δB1 ε
B
1 ; 1− ωB1 −

(
1− κB1

)
εB1 ;

(
1− δB1

)
εB1

ωC1 − κC1 εC1 ; δC1 ε
C
1 ; 1− ωC1 −

(
1− κC1

)
εC1 ;

(
1− δC1

)
εC1

ωD1 − κD1 εD1 ; δD1 ε
D
1 ; 1− ωD1 −

(
1− κD1

)
εD1 ;

(
1− δD1

)
εD1
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F2 =


δA2 ε

A
2 ; ωA2 − κA2 εA2 ;

(
1− δA2

)
εA2 1− ωA2 −

(
1− κA2

)
εA2

δB2 ε
B
2 ; ωB2 − κB2 εB2 ;

(
1− δB2

)
εB2 1− ωB2 −

(
1− κB2

)
εB2

δC2 ε
C
2 ; ωC2 − κC2 εC2 ;

(
1− δC2

)
εC2 1− ωC2 −

(
1− κC2

)
εC2

δD2 ε
D
2 ; ωD2 − κD2 εD2 ;

(
1− δD2

)
εD2 1− ωD2 −

(
1− κD2

)
εD2

 ,

for many different chosen values of
{
εlk
}

and
{
δlk
}

.

A.5 Proof of Proposition 3

We first restate Proposition 3:

Proposition 3. Given observed data on {Yit, Lit, Lit−1} and given values of
{
T̂ijt, M̂ijt

}
there exists a

unique (up to scale) set of values of
{
Pσ−1
it , Pσ−1

it ,Πθ
it,Λ

θ
it

}
that satisfy equations (22)-(25).

Proof. Note that the four equations can be considered as two distinct systems of two equations, where the
two systems of equations are:

P1−σ
it =

∑
j

T̂ijt × Yjt × (P 1−σ
jt )−1

P 1−σ
it =

∑
j

T̂jit × Yjt × (P1−σ
it )−1,

and:

(
Λθit
)−1

=
∑
j

M̂jit × Ljt−1 ×
(
Πθ
jt

)−1

Πθ
it =

∑
j

M̂ijt × Ljt × Λθjt.

The first system of equations can be written as:

xi =
∑
j

KA
ijy
−1
j

yi =
∑
j

KB
ijx
−1
j ,

which has a corresponding LHS matrix of coefficients:

B ≡
(

1 0
0 1

)
,

and the matrix on the RHS coefficients becomes:

Γ ≡
(

0 −1
−1 0

)
.

Hence, we have:

A ≡ ΓB−1 =

(
0 −1
−1 0

)
.

16



The second system of equations can be written as:

x−1
i =

∑
j

KA
ijy
−1
j

yi =
∑
j

KB
ijxj ,

which has a corresponding LHS matrix of coefficients:

B ≡
(
−1 0
0 1

)
and the matrix on the RHS coefficients becomes:

Γ ≡
(

0 −1
1 0

)
.

Hence, we have:

A ≡ ΓB−1 =

(
0 −1
−1 0

)
.

In both systems, we have Ap =

(
0 1
1 0

)
. It is then straightforward to check that ρ (Ap) = 1, as required.
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B Online Appendix: Possible Microfoundations for Spillovers

Section 2 briefly discussed several microfoundations for the productivity and amenity spillover functions in
equations (1) and (3), respectively. This appendix elaborates.

B.1 Productivity spillovers

We formalize two models—based on the persistence of local knowledge and the durability of investments,
in turn—that provide examples of formal microfoundations for the productivity spillover function, Ait =
ĀitL

α1
it L

α2
it−1.

B.1.1 Microfoundation #1: persistence of local knowledge

We follow Deneckere & Judd (1992). Suppose that firms can pay a fixed cost fi (in terms of local labor)
to create a new variety, over which they have monopoly rights for one period (the period in which they
introduce the variety). In the subsequent period, the new variety exists but is produced under conditions
of perfect competition. In the following period (two periods after its introduction), we assume the variety
no longer exists (i.e. its value to consumers has fully depreciated). Finally, we assume that consumers
have Cobb-Douglas preferences (within locations) over the the new varieties and the old varieties, and CES
preferences across respectively.

Demand: Let Ωnewit be the set of varieties created by monopolistically competitive firms in period t in
location i and Ωoldi,t be the set of varieties created in the previous period that are now produced under perfect
competition. We assume that consumers have the following preferences:

Cjt =

∑
i


(ˆ

Ωnewit

qijt (ω)
ρ−1
ρ dω

) ρ
ρ−1

χ(ˆ
Ωoldit

qijt (ω)
ρ−1
ρ dω

) ρ
ρ−1

1−χ


σ−1
σ


σ
σ−1

,

where qijt (ω) is the quantity consumed in country j of variety ω from location i. Hence, ρ is the elasticity
of substitution between varieties of a given type from a given location, χ is the Cobb-Douglas share of the
CES composite of new varieties from a given location, and σ is the elasticity of substitution of the aggregate
bundles (of new and old goods) across locations.

Given these preferences, the quantity a consumer in location j in period t will demand from firm ω in
location i can be written as:

qijt (ω) =


χpijt (ω)

−ρ
(Pnewit )

ρ−1 ×
τ1−σ
ijt

(
(Pnewit )χ(P oldit )

1−χ
)1−σ

∑
k τ

1−σ
ijt

(
(Pnewkt )

χ
(P oldkt )

1−χ
)1−σ Yjt if ω ∈ Ωnewit

(1− χ) pijt (ω)
−ρ (

P oldit
)ρ−1 ×

τ1−σ
ijt

(
(Pnewit )χ(P oldit )

1−χ
)1−σ

∑
k τ

1−σ
ijt

(
(Pnewkt )

χ
(P oldkt )

1−χ
)1−σ Yjt if ω ∈ Ωoldit ,

(B.1)

where:

(Pnewit )
1−ρ ≡

ˆ
Ωnewit

pijt (ω)
1−ρ

dω (B.2)

(
P oldit

)1−ρ ≡ ˆ
Ωoldit

pijt (ω)
1−ρ

dω (B.3)

denote the price indices of the inner CES nests.
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Supply: Let cit ≡ wit
Āit

denote the marginal cost of production by a firm, where Āit is the (exogenous)
productivity. The optimization problem faced by firm ω is:

max
{qijt(ω)}j

∑
j

(pijt (ω) qijt (ω)− citτijtqijt (ω))− witfit,

subject to consumer demand given by equation (B.1).
As a result, conditional on positive production (of which more below), the first order conditions imply:

pijt (ω) =
ρ

ρ− 1
citτijt, (B.4)

so that the price index across new varieties within a location is:

Pnewit ≡ (Mnew
it )

1
1−ρ

(
ρ

ρ− 1
cit

)
. (B.5)

Profits of monopolistically competitive firms: The profits of a firm ω ∈ Ωnewit are:

πit (ω) ≡
∑
j

(pijt (ω)− citτijt) qijt (ω)− witfit. (B.6)

Substituting the consumer demand expression (B.1) and the price expression (B.4) into equation (B.6) yields:

πit (ω) = χ
1

ρ

(
ρ

ρ− 1

)1−ρ∑
j

(citτijt)
1−ρ

(Pnewit )
ρ−1

τ1−σ
ijt

(
(Pnewit )

χ (
P oldit

)1−χ)1−σ

∑
k τ

1−σ
ijt

(
(Pnewkt )

χ (
P oldkt

)1−χ)1−σ Yjt − witfit

Noting that, from the consumer demand equation (B.1) and the price expression (B.4), the revenue a producer
receives is:

rit (ω) ≡
∑
j

pijt (ω) qijt (ω) ⇐⇒

rit (ω)

(
ρ

ρ− 1

)ρ−1
1

χ
=
∑
j

(citτijt)
1−ρ

(Pnewit )
ρ−1

τ1−σ
ijt

(
(Pnewit )

χ (
P oldit

)1−χ)1−σ

∑
k τ

1−σ
ijt

(
(Pnewkt )

χ (
P oldkt

)1−χ)1−σ Yjt, (B.7)

it is apparent that variable profits are simply equal to revenue divided by the elasticity of substitution:

πit (ω) + witfit =
1

ρ
rit (ω) . (B.8)

Free entry: From the free entry condition, total profits of a firm are zero, i.e. πit (ω) = 0. Applying the
free entry condition to equation (B.8) yields:

witfit =
1

ρ
rit (ω) (B.9)

Substituting equation (B.9) into equation (B.7) yields:

∑
j

τ1−ρ
ijt w−ρit A

ρ−1
it (Pnewit )

ρ−1
τ1−σ
ijt

(
(Pnewit )

χ (
P oldit

)1−χ)1−σ

∑
k τ

1−σ
ijt

(
(Pnewkt )

χ (
P oldkt

)1−χ)1−σ Yjt =
1

χ

(
ρ

ρ− 1

)ρ−1

ρfit, (B.10)

where we use the fact that cit = wit/Ait.
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Perfectly competitive varieties: The price charged for the perfectly competitive varieties ω ∈
Ωnewit is simply the marginal cost:

pijt (ω) = τijtcit ∀ω ∈ Ωnewit ,

so that:

P oldit =
(
Mold
it

) 1
1−ρ cit, (B.11)

where Mold
it ≡

∣∣Ωoldit ∣∣ denotes the measure of existing varieties.

Labor market clearing: Labor market clearing requires that the total labor used by all firms (for
entry and production of the new varieties as well as production of the existing varieties) must equal to the
total number of workers in the location, Li,t. The total amount of labor required by new varieties is:

Lnewit =

ˆ

Ωnewit

∑
j

τijt
qijt (ω)

Āit
+ fi

 dω ⇐⇒

Lnewit = ρfitM
new
it ,

where Mnew
it ≡ |Ωnewit | denotes the measure of new varieties and we have used the free entry equation (B.10).

Similarly, the total amount of labor required by old varieties is:

Loldit =

ˆ

Ωoldit

∑
j

τijt
qijt (ω)

Āit

 dω ⇐⇒

Loldit = Mnew
it

1− χ
χ

ρfit,

where we have used the equations for the old and new variety price indices from equations (B.5) and (B.11).
Total labor used by all firms is hence:

Lnewit + Loldit = Lit ⇐⇒

Mnew
it = χ

Lit
ρfit

, (B.12)

so that the measure of new firms is proportional to the labor supply.

The productivity microfoundation: Combining the old and new variety price indices from equa-
tions (B.5) and (B.11) yields:(

(Pnewit )
χ (
P oldit

)1−χ)1−σ
= (cit)

1−σ ρ

ρ− 1

(1−σ)χ
(Mnew

it )
χ( 1−σ

1−ρ ) (Mold
it

)(1−χ)( 1−σ
1−ρ )

.

Total trade flows from i to j at time t are determined by simply aggregating across all firms of both
types. The total trade of new varieties is thus:

Xnew
ijt =

ˆ
Ωnewit

pijt (ω) qijt (ω) dω ⇐⇒

Xnew
ijt = χ

(τijtcit)
1−σ

(Mnew
it )

χ( 1−σ
1−ρ ) (Mold

it

)(1−χ)( 1−σ
1−ρ )∑

k (τkjtckt)
1−σ

(Mnew
kt )

χ( 1−σ
1−ρ ) (Mold

kt

)(1−χ)( 1−σ
1−ρ )

Yjt.
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Similarly, the total trade of existing varieties is:

Xold
ijt =

ˆ
Ωoldit

pijt (ω) qijt (ω) dω ⇐⇒

Xold
ijt = (1− χ)

(τijtcit)
1−σ

(Mnew
it )

χ( 1−σ
1−ρ ) (Mold

it

)(1−χ)( 1−σ
1−ρ )∑

k (τkjtckt)
1−σ

(Mnew
kt )

χ( 1−σ
1−ρ ) (Mold

kt

)(1−χ)( 1−σ
1−ρ )

Yjt.

Hence, total trade flows are:

Xijt = Xnew
ijt +Xold

ijt ⇐⇒
Xijt = τ1−σ

ijt w1−σ
it Aσ−1

it Pσ−1
jt Yjt,

where:
P 1−σ
jt ≡

∑
k

τ1−σ
kjt w

1−σ
kt Aσ−1

kt

and:

Ait ≡ Āitf
1
ρ−1

it × Lα1
it × L

α2
it−1,

and α1 ≡ χ
ρ−1 and α2 ≡ 1−χ

ρ−1 , as claimed.

B.1.2 Microfoundation #2: durable investments in local productivity

Setup: In each location i, there is a measure of firms that compete a la Bertrand. Firms can hire workers
either to produce or to innovate, where the total quantity produced in location i at time t depends on the
amount of labor used in the production Lit, the amount of land Hit, the amount of innovation φit and some
productivity shifter Bit:

Qit = φγ1it BitL
µ
itH

1−µ
it ⇐⇒

qit = φγ1it Bitl
µ
it,

where in what follows we focus on the output per unit land qit and the labor per unit land lit. We assume
the parameters satisfy µ < 1 (due to the diminishing marginal product of labor per unit land) and γ1 < 1
(due to the diminishing marginal product of innovation).

To employ a level of innovation φit, a firm must hire νφξit additional units of labor, where ξ < γ1/ (1− µ).
We assume that innovation today has an affect on the level of productivity tomorrow so that:

Bit = φδ̃γ1it−1B̄it, (B.13)

where B̄it is an exogenous shock and δ̃ < 1 indicates the extent to which innovation decays from one period
to the next. We assume the cost per unit of land rit is determined by a competitive auction, so that firms
obtain zero profits.

Profit maximization: Even though innovations today affect innovations in future periods, because
firms earn zero profits in the future, the dynamic problem reduces to a sequence of static profit maximizing
problems Desmet & Rossi-Hansberg (2014).

As a result the firms’ profit maximization problem becomes:

max
lit,φit

pitBit (φγ1it )× (lµit)− wit lit︸︷︷︸
# of production workers

−wit
(
νφξit

)
︸ ︷︷ ︸

# of innovation workers

−rit,
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which has the following first order conditions:

γ1Bitpitφ
γ1−1
it lµit = ξνwitφ

ξ−1
it

µBitpitφ
γ1
it l

µ−1
it = wit,

which combine to yield:

γ1

µ
lit = ξνφξit ⇐⇒(

γ1

µξν
lit

) 1
ξ

= φit. (B.14)

Total employment l̃it per unit land is equal to the sum of the production workers and the innovation workers:

l̃it = lit + νφξit ⇐⇒

l̃it =

(
1 +

γ1

µξ

)
lit.

Rent and income: Equilibrium rent ensures that profits per unit land are equal to zero:

rit = Bitpitφ
γ1
it l

µ
it + witlit + νwitφ

ξ
it ⇐⇒

rit =

(
1

µ
+ 1 +

γ1

µξ

)
witlit.

Note that total income per unit labor in a location is:

Yit = ritHit + witL̃it ⇐⇒

Yit

L̃it
=

 1
µ + 1 + γ1

µξ(
1 + γ1

µξ

) + 1

wit.

The productivity microfoundation: The output price is:

µBitpitφ
γ1
it L

µ−1
it = wit ⇐⇒

pit =
1

Bit

(
1

µ

(
ξνµ

γ1

) γ1
ξ

)
witl

1−µ− γ1ξ
it

total output is:

qit = φγ1it Bitl
µ
it ⇐⇒

Qit =

(
γ1

µξν

) γ1
ξ

BitL̃
µ+

γ1
ξ

it H
1−µ− γ1ξ
it ,

where L̃it is total employment in location i at time t. Combining equations (B.13) and (B.14) yields:

Bit = φδ̃γ1it−1B̄it ⇐⇒

Bit =

 γ1
µξν(

1 + γ1
µξ

) L̃it−1

Hit−1

δ̃
γ1
ξ

B̄it,
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so that in total we have:

Qit =

(
γ1

µξν

) γ1
ξ


 γ1

µξν(
1 + γ1

µξ

) L̃it−1

Hit−1

δ̃
γ1
ξ

B̄it

 L̃
µ+

γ1
ξ

it H
1−µ− γ1ξ
it ⇐⇒

Qit = ĀitL̃
α1
it L̃

α2
it−1L̃it,

where Āit ≡
(
γ1
µξν

)(1+δ̃)
γ1
ξ
(

1 + γ1
µξ

)−δ̃ γ1ξ
B̄itH

1−µ− γ1ξ
it H

−δ γ1ξ
it−1 , α1 ≡ γ1

ξ − (1− µ), and α2 ≡ δ̃ γ1ξ , as required.

B.2 Amenity spillover

We formalize here a possible microfoundation for the amenity spillover function, uit = ūitL
β1

it L
β2

it−1.

Demand: Suppose that consumers have Cobb-Douglas preferences over land and a consumption good,
so that their indirect utility function can be written as:

Wit =
(Yit/Lit)

(Pit)
λ (
rHit
)1−λ ,

where rHit is the rental cost of housing. Let Hit denote the (equilibrium quantity) of housing and let Kit

denote the (exogenous) quantity of land in a location, so that hit ≡ Hit/Kit is the housing density (e.g.
square feet of housing per acre of land).

Given the Cobb-Douglas preferences (and, from balanced trade, that income equals expenditure, Yit =
Eit), we have:

rHitHit = (1− λ)Yit

witLit = λYit,

so that we can write the payment to housing as a function of the payment to labor:

rHit =

(
1− λ
λ

)
1

Hit
witLit.

Note then that we can write:

Wit =
(Yit/Lit)

(Pit)
λ (
rHit
)1−λ ⇐⇒

W̃it =
1

λ (1− λ)
1−λ
λ

wit
Pit

(
Hit

Lit

) 1−λ
λ

, (B.15)

where W̃it ≡W
1
λ
it is a positive monotonic transform of Wit that hence can serve as our measure of welfare.

Supply: We now determine the equilibrium stock of housing Hit. Suppose that each unit of land is
owned by a representative developer, who decides how much to upgrade the housing tract. The amount of
housing per unit land (hit ≡ Hit

Kit
) is a function of the housing stock that has survived from the previous

period
(
hexistingit ≡ Hexistingit

Kit

)
and the amount of labor that the firm chooses to hire to rebuild it:

hit =
(
hexistingit

)µ (
ldit
)1−µ ⇐⇒

Hit =
(
Hexisting
it

)µ (
Ldit
)1−µ

.
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In what follows, we assume for simplicity that the existing housing stock from period t − 1 in period t is
some fraction of the development in the previous period:

Hexisting
it = C̄it

(
Ldit−1

)ρ
, (B.16)

where C̄it is an (exogenous) shock.

Profit maximization: A developer solves:

max
ldit

rHit hit − witldit − fit ⇐⇒

max
ldit

rHit

(
hexistingit

)µ (
ldit
)1−µ − witldit − fit,

where fit is a fixed cost (a “permit cost”) that is remitted back to local residents and is set via a competitive
biding process, ensuring that the firm earns zero profits (and hence the dynamic problem simplifies into a
series of static profit maximization problems, as above).

First order conditions are:

(1− µ) rHit

(
hexistingit

)µ (
ldit
)−µ

= wit ⇐⇒(
hexistingit

)µ (
ldit
)1−µ

=
1

1− µ
1

rHit
witl

d
it.

Note that the fixed “permit costs” are then:

fit = rHit

(
hexistingit

)µ (
ldit
)1−µ − witldit ⇐⇒

fit =

(
µ

1− µ

)
witl

d
it,

which recall are remitted to workers and ensure profits are zero.
We can combine this with the rental rate above to calculate the fraction of workers hired in the devel-

opment of the land:

hit =
(
hexistingit

)µ (
ldit
)1−µ ⇐⇒

(1− µ)

(
1− λ
λ

)
Lit = Ldit,

so we require as a parametric restriction (so that only a fraction of workers are hired as local developers):

(1− µ)

(
1− λ
λ

)
< 1.

Since a constant fraction of local workers are hired, we can express the housing density solely as a function
of the local population, the local land area, and then:

hit =
(
hexistingit

)µ (
ldit
)1−µ ⇐⇒

Hit =

(
(1− µ)

(
1− λ
λ

))(1−µ)+ρµ

C̄µit (Lit−1)
ρµ

(Lit)
1−µ

. (B.17)
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The amenity microfoundation: We substitute equation (B.17) for the equilibrium stock of housing
into the welfare equation (B.15) to yield:

W̃it =
1

λ (1− λ)
1−λ
λ

wit
Pit

(
Hit

Lit

) 1−λ
λ

⇐⇒

W̃it =
wit
Pit

ūitL
β1

it L
β2

it−1,

where ūit ≡ 1

λ(1−λ)
1−λ
λ

(
(1− µ)

(
1−λ
λ

)) 1−λ
λ ((1−µ)+ρµ)

C̄
1−λ
λ

it , β1 ≡ −µ 1−λ
λ , and β2 ≡ ρµ 1−λ

λ as required.
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C Online Appendix: Additional tables and figures

This section includes additional tables and figures mentioned in footnotes in the text.
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Table C.1: First stage estimates

(1) (2)
Endogenous regressors (log): Pop. (Lit) Pop. 50 yrs ago (Lit−1)
Instruments shifting amenities (used to estimate prod. spillovers):
Year*Average max. temp. in hottest month (z-score) -0.271*** -0.052

(0.034) (0.067)
Year*Average max. temp. in hottest month (z-score)2 -0.063*** 0.040*

(0.015) (0.024)
Year*Average min. temp. in coldest month (z-score) 0.140*** -0.394***

(0.029) (0.049)
Year*Average min. temp. in coldest month (z-score)2 0.170*** 0.168***

(0.018) (0.029)
Instruments shifting productivities (used to estimate amen. spillovers):

Year*High - low inten. corn potential yield (z-score) 0.369*** 0.583***
(0.044) (0.087)

Year*High - low inten. corn potential yield (z-score)2 0.007 -0.070**
(0.018) (0.035)

Year*High inten. soy - low inten. wheat potential yield (z-score) -0.119*** -0.275***
(0.046) (0.090)

Year*High inten. soy - low inten. wheat potential yield (z-score)2 0.041** 0.032
(0.016) (0.028)

Fixed effects:
Sub-county Yes Yes
Region-year Yes Yes
F-statistic 22.809 21.968
R-squared 0.890 0.805
Observations 15764 15764

Notes: Ordinary least squares. Each observations is a sub-county from 1850, 1900, 1950
or 2000. Sub-county and region-year fixed effects are included in all specifications. There
are 10 regions, constructed using a k-means clustering algorithm based on latitude and
longitude. The sample is all sub-counties in all years where geographic instruments and
contemporaneous/lagged population values are observed. Standard errors two-way clustered
at the sub-county (to allow for serial correlation across time) and county-year level (to allow
for data aggregation across sub-counties within year) reported in parentheses. Stars indicate
statistical significance: * p<.10 ** p<.05 *** p<.01.
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Figure C.1: Spatial distributions of population over time

(a) 1800 (b) 1850

(c) 1900 (d) 1950

(e) 2000

Notes : This figure illustrates the distribution of population (Lit) across all locations from
1800 to 2000. The average population in a location in each year is normalized to one. The
colors indicate the value, with red indicating a higher population and blue indicating a lower
population.
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Figure C.2: Spatial distributions of per capita income over time

(a) 1850 (b) 1900

(c) 1950 (d) 2000

Notes : This figure illustrates the distribution of per capita income (wit) in all locations 1850
to 2000. The average value of wit in a location in each year is normalized to one. The colors
indicate the value, with red indicating a higher population and blue indicating a lower wage.
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Figure C.3: Estimated speed of travel

(a) 1850 (b) 1900

(c) 1950 (d) 2000

Notes : This figure illustrates the estimated speed of travel (measured in kilometer per hour)
for each year. The underlying data is at the 1km×1km square grid, but for readability
(and file size concerns), the figures above present the average speed of travel across a disc
of 3 kilometer radius. Speed of travel is calculated using the observed local topography, the
navigable waterway network, the railroad network, and the road network (by type of road).
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Figure C.4: Estimated cost of travel

(a) 1850 (b) 1900

(c) 1950 (d) 2000

Notes : This figure illustrates the estimated cost of travel (measured in 1850 dollars per ton)
for each year. The underlying data is at the 1km×1km square grid, but for readability (and
file size concerns), the figures above present the average cost of travel across a disc of 3
kilometer radius. The cost of travel is calculated using the observed local topography, the
navigable waterway network, the railroad network, and the road network (by type of road).
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Figure C.5: Estimating trade costs from flows through Chicago

(a) Example data from 1858 Chicago Commerce Report

(b) Estimated basins for each mode of travel into Chicago, 1861

Notes: Panel (a) of the figure illustrates the raw data from the 1858 Annual report of the trade and commerce

of Chicago for wheat. This information (in quantities) is converted to values using the reported prices from

the the same publication and combined with similar information from 17 other available commodities to

generate the total value of Chicago imports and exports by mode (canal, lake, overland, and the ten different

rail lines). Panel (b) of the figure illustrates the mode that we estimate offers the least cost route to Chicago,

i.e. the “basin” of each possible mode of transit. For example, the green area to the west of Chicago indicates

locations for which the least cost route arrives in/departs from Chicago via canal; the yellow area indicates

locations for which the least cost route arrives in/departs from Chicago via Lake Michigan; and the blue and

orange regions indicate basins for each respective railroad line (using the 1861 railroad network).
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Figure C.6: Spatial distributions of the recovered present discounted value of residence (V θ
it)

(a) 1850 (b) 1900

(c) 1950 (d) 2000

Notes : This figure illustrates the distribution of the present discounted value of residence (to
the power of the migration elasticity), V θ

it , which can be uniquely recovered given observed
populations, outputs, and estimated migration cots; see Proposition 3. The colors indicate
the value, with red indicating a higher PDV and blue indicating a lower PDV.
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Figure C.7: Estimating productivity and amenity spillovers using plausibly exogenous shifts
in labor supply and demand curves over time

(a) Shifts to the supply curve from amenity changes

(b) Shifts to the demand curve from productivity changes

Notes : This figure illustrates the fitted values of the first-stages from the 2SLS regressions
in Tables 2 and 3. The left panel shows the predicted change (from 1850-2000) in log popu-
lation due to plausibly exogenous changes in amenities based on technological improvements
which make residing in places with extreme climates of relatively higher amenity value over
time. These improvements shift the labor supply curve in each location and can be used to
identify the contemporaneous productivity spillover. The right panel shows the predicted
trend in log population from plausibly exogenous changes in productivities based on techno-
logical improvements and changes in international demand in agricultural production. These
improvements shift the labor demand curve in each location and can be used to identify the
contemporaneous amenity spillover. Red indicates relatively large values and blue indicates
relatively low values.
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