1. Problem Set 1 has been posted
2. It is due on Wednesday September 27
Today’s Plan

1. Overview
2. Log-supermodularity
3. R-R model
4. Cross-sectional predictions
5. Comparative static predictions
1. Overview
Assignment Models in the Trade Literature

- Small but rapidly growing literature using assignment models in an international context:

- **What do these models have in common?**
 - Factor allocation can be summarized by an assignment function
 - Large number of factors and/or goods

- **What is the main difference between these models?**
 - *Matching*: Two sides of each match in finite supply (as in Becker 1973)
 - *Sorting*: One side of each match in infinite supply (as in Roy 1951)
I will restrict myself to sorting models, e.g. Ohnsorge and Trefler (2007), Costinot (2009), and Costinot and Vogel (2010)

- Production functions are linear, as in Ricardian model
- But more than one factor per country, as in Roy model
- **Ricardo-Roy model**

Objectives:

1. Describe how these models relate to “standard” neoclassical models
2. Introduce simple tools from the mathematics of complementarity
3. Use tools to derive cross-sectional and comparative static predictions

This is very much a methodological lecture. If you are interested in more specific applications, read the papers...
2. Log-Supermodularity
Definition 1 A function $g: X \rightarrow \mathbb{R}^+$ is log-supermodular if for all $x, x' \in X$, $g(\max(x, x')) \cdot g(\min(x, x')) \geq g(x) \cdot g(x')$

Bivariate example:

- If $g : X_1 \times X_2 \rightarrow \mathbb{R}^+$ is log-spm, then $x'_1 \geq x''_1$ and $x'_2 \geq x''_2$ imply

 $$g(x'_1, x'_2) \cdot g(x''_1, x''_2) \geq g(x'_1, x''_2) \cdot g(x'_1, x''_2),$$

- If g is strictly positive, this can be rearranged as

 $$g(x'_1, x'_2) / g(x''_1, x''_2) \geq g(x'_1, x''_2) / g(x''_1, x''_2).$$
Log-supermodularity

Results

Lemma 1. \(g, h : X \to \mathbb{R}^+ \) log-spm \(\Rightarrow \) gh log-spm

Lemma 2. \(g : X \to \mathbb{R}^+ \) log-spm \(\Rightarrow \) \(G(x_{-i}) = \int_{x_i} g(x) \, dx_i \) log-spm

Lemma 3. \(g : T \times X \to \mathbb{R}^+ \) log-spm \(\Rightarrow \)

\[x^*(t) \equiv \arg \max_{x \in X} g(t, x) \text{ increasing in } t \]
3. R-R Model
Consider a world economy with:

1. Multiple countries with characteristics $\gamma \in \Gamma$
2. Multiple goods or sectors with characteristics $\sigma \in \Sigma$
3. Multiple factors of production with characteristics $\omega \in \Omega$

Factors are immobile across countries, perfectly mobile across sectors.
Goods are freely traded at world price $p(\sigma) > 0$
Technology

- Within each sector, factors of production are perfect substitutes

\[Q(\sigma, \gamma) = \int_{\Omega} A(\omega, \sigma, \gamma) L(\omega, \sigma, \gamma) d\omega, \]

- \(A(\omega, \sigma, \gamma) \geq 0 \) is productivity of \(\omega \)-factor in \(\sigma \)-sector and \(\gamma \)-country

- **A1** \(A(\omega, \sigma, \gamma) \) is log-supermodular

- A1 implies, in particular, that:
 1. High-\(\gamma \) countries have a comparative advantage in high-\(\sigma \) sectors
 2. High-\(\omega \) factors have a comparative advantage in high-\(\sigma \) sectors
Factor Endowments

- $V(\omega, \gamma) \geq 0$ is inelastic supply of ω-factor in γ-country
- **A2** $V(\omega, \gamma)$ is log-supermodular

A2 implies that:
- High-γ countries are relatively more abundant in high-ω factors
- Preferences will be described later on when we do comparative statics
4. Cross-Sectional Predictions
4.1 Competitive Equilibrium

- We take the price schedule \(p(\sigma) \) as given [small open economy]
- In a competitive equilibrium, \(L \) and \(w \) must be such that:
 1. Firms maximize profit
 \[
 p(\sigma) A(\omega, \sigma, \gamma) - w(\omega, \gamma) \leq 0, \text{ for all } \omega \in \Omega \\
 p(\sigma) A(\omega, \sigma, \gamma) - w(\omega, \gamma) = 0, \text{ for all } \omega \in \Omega \text{ s.t. } L(\omega, \sigma, \gamma) > 0
 \]
 2. Factor markets clear
 \[
 V(\omega, \gamma) = \int_{\sigma \in \Sigma} L(\omega, \sigma, \gamma) d\sigma, \text{ for all } \omega \in \Omega
 \]
4.2 Patterns of Specialization

Predictions

- Let $\Sigma(\omega, \gamma) \equiv \{\sigma \in \Sigma | L(\omega, \sigma, \gamma) > 0\}$ be the set of sectors in which factor ω is employed in country γ.

Theorem [PAM] $\Sigma(\cdot, \cdot)$ is increasing.

Proof:

1. Profit maximization $\Rightarrow \Sigma(\omega, \gamma) = \arg \max_{\sigma \in \Sigma} p(\sigma) A(\omega, \sigma, \gamma)$
2. A1 $\Rightarrow p(\sigma) A(\omega, \sigma, \gamma)$ log-spm by Lemma 1
3. $p(\sigma) A(\omega, \sigma, \gamma)$ log-spm $\Rightarrow \Sigma(\cdot, \cdot)$ increasing by Lemma 3

Corollary High-ω factors specialize in high-σ sectors.

Corollary High-γ countries specialize in high-σ sectors.
4.2 Patterns of Specialization
Relation to the Ricardian literature

- Ricardian model ≡ Special case w/ $A(\omega, \sigma, \gamma) \equiv A(\sigma, \gamma)$
- Previous corollary can help explain:

1. **Multi-country-multi-sector Ricardian model;** Jones (1961)
 - According to Jones (1961), efficient assignment of countries to goods solves $\max \sum \ln A(\sigma, \gamma)$
 - According to Corollary, $A(\sigma, \gamma)$ log-spm implies PAM of countries to goods; Becker (1973), Kremer (1993), Legros and Newman (1996).

 - Papers vary in terms of source of “institutional dependence” σ and ”institutional quality” γ
 - ...but same fundamental objective: providing micro-theoretical foundations for the log-supermodularity of $A(\sigma, \gamma)$
Previous results are about the set of goods that each country produces.

Question: Can we say something about how much each country produces? Or how much it employs in each particular sector?

Answer: Without further assumptions, the answer is no.
4.3 Aggregate Output, Revenues, and Employment

Additional assumptions

- **A3.** The profit-maximizing allocation L is unique
- **A4.** Factor productivity satisfies $A(\omega, \sigma, \gamma) \equiv A(\omega, \sigma)$

Comments:

1. A3 requires $p(\sigma) A(\omega, \sigma, \gamma)$ to be maximized in a *single* sector
2. A3 is an implicit restriction on the demand-side of the world-economy
 - ... but it becomes milder and milder as the number of factors or countries increases
 - ... generically true if continuum of factors
3. A4 implies no Ricardian sources of CA across countries
 - Pure Ricardian case can be studied in a similar fashion
 - Having multiple sources of CA is more complex (Costinot 2009)
4.3 Aggregate Output, Revenues, and Employment

Output predictions

- **Theorem**: If A3 and 4 hold, then $Q(\sigma, \gamma)$ is log-spm.

- **Proof**:
 1. Let $\Omega(\sigma) \equiv \{ \omega \in \Omega | p(\sigma) A(\omega, \sigma) > \max_{\sigma' \neq \sigma} p(\sigma') A(\omega, \sigma') \}$. A3 and A4 imply $Q(\sigma, \gamma) = \int 1_{\Omega(\sigma)}(\omega) \cdot A(\omega, \sigma) V(\omega, \gamma) d\omega$
 2. $A1 \Rightarrow \tilde{A}(\omega, \sigma) \equiv 1_{\Omega(\sigma)}(\omega) \cdot A(\omega, \sigma)$ log-spm
 3. $A2$ and $\tilde{A}(\omega, \sigma)$ log-spm $+$ Lemma 1 $\Rightarrow \tilde{A}(\omega, \sigma) V(\omega, \gamma)$ log-spm
 4. $\tilde{A}(\omega, \sigma) V(\omega, \gamma)$ log-spm $+$ Lemma 2 $\Rightarrow Q(\sigma, \gamma)$ log-spm

- **Intuition**:
 1. $A1 \Rightarrow$ high ω-factors are assigned to high σ-sectors
 2. $A2 \Rightarrow$ high ω-factors are more likely in high γ-countries
Corollary. Suppose that A3 and A4 hold. If two countries produce J goods, with $\gamma_1 \geq \gamma_2$ and $\sigma_1 \geq ... \geq \sigma_J$, then the high-$\gamma$ country tends to specialize in the high-σ sectors:

$$\frac{Q(\sigma_1, \gamma_1)}{Q(\sigma_1, \gamma_2)} \geq ... \geq \frac{Q(\sigma_J, \gamma_1)}{Q(\sigma_J, \gamma_2)}$$
4.3 Aggregate Output, Revenues, and Employment

Employment and revenue predictions

- Let \(L(\sigma, \gamma) \equiv \int_{\Omega(\sigma)} V(\omega, \gamma) d\omega \) be aggregate employment
- Let \(R(\sigma, \gamma) \equiv \int_{\Omega(\sigma)} r(\omega, \sigma) V(\omega, \gamma) d\omega \) be aggregate revenues

Corollary. Suppose that A3 and A4 hold. If two countries produce \(J \) goods, with \(\gamma_1 \geq \gamma_2 \) and \(\sigma_1 \geq \ldots \geq \sigma_J \), then aggregate employment and aggregate revenues follow the same pattern as aggregate output:

\[
\frac{L(\sigma_1, \gamma_1)}{L(\sigma_1, \gamma_2)} \geq \ldots \geq \frac{L(\sigma_J, \gamma_1)}{L(\sigma_J, \gamma_2)} \quad \text{and} \quad \frac{R(\sigma_1, \gamma_1)}{R(\sigma_1, \gamma_2)} \geq \ldots \geq \frac{R(\sigma_J, \gamma_1)}{R(\sigma_J, \gamma_2)}
\]
4.3 Aggregate Output, Revenues, and Employment

Relation to the previous literature

1. **Worker Heterogeneity and Trade**
 - Generalization of Ruffin (1988):
 - Continuum of factors, Hicks-neutral technological differences
 - Results hold for an arbitrarily large number of goods and factors
 - Generalization of Ohnsorge and Trefler (2007):
 - No functional form assumption (log-normal distribution of human capital, exponential factor productivity)

2. **Firm Heterogeneity and Trade**
 - “Factors” ≡ “Firms” with productivity ω
 - “Countries” ≡ “Industries” with characteristic γ
 - “Sectors” ≡ “Organizations” with characteristic σ
 - $Q(\sigma, \gamma)$ ≡ Sales by firms with ”σ-organization” in “γ-industry”
 - In previous papers, $f(\omega, \gamma)$ log-spm is crucial, Pareto is not
5. Comparative Static Predictions
5.1 Closing The Model

Additional assumptions

- Assumptions A1-4 are maintained
- In order to do comparative statics, we also need to specify the demand side of our model:

\[
U = \left\{ \int_{\sigma \in \Sigma} \left[C(\sigma, \gamma) \right]^\frac{\varepsilon-1}{\varepsilon} d\sigma \right\}^{\frac{\varepsilon}{\varepsilon-1}}
\]

- For expositional purposes, we will also assume that:
 - \(A(\omega, \sigma) \) is strictly log-supermodular
 - Continuum of factors and sectors: \(\Sigma \equiv [\sigma, \bar{\sigma}] \) and \(\Omega \equiv [\omega, \bar{\omega}] \)
5.1 Closing the Model

Autarky equilibrium

Autarky equilibrium is a set of functions \((Q, C, L, p, w)\) such that:

1. **Firms maximize profit**

\[
p(\sigma)A(\omega, \sigma) - w(\omega, \gamma) \leq 0, \text{ for all } \omega \in \Omega
\]

\[
p(\sigma)A(\omega, \sigma) - w(\omega, \gamma) = 0, \text{ for all } \omega \in \Omega \text{ s.t. } L(\omega, \sigma, \gamma) > 0
\]

2. **Factor markets clear**

\[
V(\omega, \gamma) = \int_{\sigma \in \Sigma} L(\omega, \sigma, \gamma) d\sigma, \text{ for all } \omega \in \Omega
\]

3. **Consumers maximize their utility and good markets clear**

\[
C(\sigma, \gamma) = I(\gamma) \times p(\sigma)^{-\varepsilon} = Q(\sigma, \gamma)
\]
5.1 Closing the Model

Properties of autarky equilibrium

- **Lemma 1** *In autarky equilibrium, there exists an increasing bijection* $M : \Omega \to \Sigma$ *such that* $L(\omega, \sigma) > 0$ *if and only if* $M(\omega) = \sigma$.

- **Lemma 2** *In autarky equilibrium, M and w satisfy*

 $\frac{dM(\omega, \gamma)}{d\omega} = A[\omega, M(\omega, \gamma)] V(\omega, \gamma) \frac{l(\gamma) \times \{p[M(\omega), \gamma]\}}{-\varepsilon}$ (1)

 $\frac{d\ln w(\omega, \gamma)}{d\omega} = \frac{\partial \ln A[\omega, M(\omega)]}{\partial \omega}$ (2)

 with $M(\omega, \gamma) = \sigma$, $M(\overline{\omega}, \gamma) = \overline{\sigma}$, *and* $p[M(\omega, \gamma), \gamma] = w(\omega, \gamma) / A[\omega, M(\omega, \gamma)]$.
5.1 Closing the Model
Properties of autarky equilibrium

- **Proof of Lemma 1**: Similar to proof of PAM in 4.2

- **Proof of Lemma 2**:
 1. Profit-maximization implies
 \[
 \ln w(\omega, \gamma) = \max_\sigma \{ \ln p(\sigma) + \ln A(\omega, \sigma) \}
 \]
 2. Thus envelope theorem gives
 \[
 \frac{d \ln w(\omega, \gamma)}{d \omega} = \frac{\partial \ln A[\omega, M(\omega)]}{\partial \omega}
 \]
 3. Factor market + good market clearing imply
 \[
 \int_{\sigma}^{M(\omega, \gamma)} I(\gamma) \times p(\sigma)^{-\varepsilon} A(\sigma, \gamma) d\sigma = \int_{\omega} V(v, \gamma) dv
 \]
 4. Differentiating with respect to \(\omega \) gives (1)
5.2 Changes in Factor Supply

Question: What happens if we change country characteristics from γ to $\gamma' \leq \gamma$?

If ω is worker “skill”, this can be thought of as a change in terms of “skill abundance”:

$$\frac{V(\omega, \gamma)}{V(\omega', \gamma)} \geq \frac{V(\omega, \gamma')}{V(\omega', \gamma')}, \text{ for all } \omega > \omega'$$

If $V(\omega, \gamma)$ was a normal distribution, this would correspond to a change in the mean.
5.2 Changes in Factor Supply

Consequence for factor allocation

- **Lemma** \(M(\omega, \gamma') \geq M(\omega, \gamma) \) for all \(\omega \in \Omega \)

- **Intuition:**
 - If there are relatively more low-\(\omega \) factors, more sectors should use them
 - From a sector standpoint, this requires *factor downgrading*
Proof: If there is ω s.t. $M(\omega, \gamma') < M(\omega, \gamma)$, then there exist:

1. $M(\omega_1, \gamma') = M(\omega_1, \gamma) = \sigma_1$, $M(\omega_2, \gamma') = M(\omega_2, \gamma) = \sigma_2$, and $\frac{M_\omega(\omega_1, \gamma')}{M_\omega(\omega_2, \gamma')} \leq \frac{M_\omega(\omega_1, \gamma)}{M_\omega(\omega_2, \gamma)}$

2. Equation (1) $\implies \frac{V(\omega_2, \gamma')}{V(\omega_1, \gamma')} \frac{C(\sigma_1, \gamma')}{C(\sigma_2, \gamma')} \geq \frac{V(\omega_2, \gamma)}{V(\omega_1, \gamma)} \frac{C(\sigma_1, \gamma)}{C(\sigma_2, \gamma)}$

3. $V \ log-sp \implies \frac{C(\sigma_1, \gamma')}{C(\sigma_2, \gamma')} \geq \frac{C(\sigma_1, \gamma)}{C(\sigma_2, \gamma)}$

4. Equation (2) $+ zero \ profits \implies \frac{d \ln p(\sigma, \gamma)}{d \sigma} = -\frac{\partial \ln A[M^{-1}(\sigma, \gamma), \sigma]}{\partial \sigma}$

5. $M^{-1}(\sigma, \gamma) < M^{-1}(\sigma, \gamma')$ for $\sigma \in (\sigma_1, \sigma_2) + A \ log-sp \implies \frac{p(\sigma_1, \gamma)}{p(\sigma_2, \gamma)} < \frac{p(\sigma_1, \gamma')}{p'(\sigma_2, \gamma')}$

6. $\frac{p(\sigma_1, \gamma)}{p(\sigma_2, \gamma)} < \frac{p(\sigma_1, \gamma')}{p'(\sigma_2, \gamma')} + CES \implies \frac{C(\sigma_1, \gamma')}{C(\sigma_2, \gamma')} < \frac{C(\sigma_1, \gamma)}{C(\sigma_2, \gamma)}$. A contradiction
5.2 Changes in Factor Supply

Consequence for factor prices

- A decrease from γ to γ' implies *pervasive rise in inequality*:

\[
\frac{w(\omega, \gamma')}{w(\omega', \gamma')} \geq \frac{w(\omega, \gamma)}{w(\omega', \gamma)}, \text{ for all } \omega > \omega'\]

- The mechanism is simple:

 1. Profit-maximization implies

\[
\frac{d \ln w(\omega, \gamma)}{d\omega} = \frac{\partial \ln A[\omega, M(\omega, \gamma)]}{\partial \omega} = \frac{\partial \ln A[\omega, M(\omega, \gamma')]}{\partial \omega}
\]

 2. Since A is log-supermodular, task upgrading implies

\[
\frac{d \ln w(\omega, \gamma')}{d\omega} \geq \frac{d \ln w(\omega, \gamma)}{d\omega}
\]
In Costinot Vogel (2010), we also consider changes in diversity.

This corresponds to the case where there exists $\hat{\omega}$ such that $V(\omega, \gamma)$ is log-supermodular for $\omega > \hat{\omega}$, but log-submodular for $\omega < \hat{\omega}$.

We also consider changes in factor demand (Computerization?):

\[
U = \left\{ \int_{\sigma \in \Sigma} B(\sigma, \gamma) \left[C(\sigma, \gamma) \right]^{\frac{\epsilon-1}{\epsilon}} d\sigma \right\}^{\frac{\epsilon}{\epsilon-1}}
\]
5.3 North-South Trade

Free trade equilibrium

- Two countries, Home (H) and Foreign (F), with $\gamma_H \geq \gamma_F$
- A competitive equilibrium in the world economy under free trade is s.t.

\[
\frac{dM(\omega, \gamma_T)}{d\omega} = \frac{A[\omega, M(\omega, \gamma_T)] V(\omega, \gamma_T)}{l_T \times \{p[M(\omega, \gamma_T), \gamma_T]\}^{-\epsilon}},
\]

\[
\frac{d \ln w(\omega, \gamma_T)}{d\omega} = \frac{\partial \ln A[\omega, M(\omega, \gamma_T)]}{\partial \omega},
\]

where:

\[
M(\omega, \gamma_T) = \sigma \text{ and } M(\bar{\omega}, \gamma_T) = \bar{\sigma}
\]

\[
p[M(\omega, \gamma_T), \gamma_T] = w(\omega, \gamma_T) A[\omega, M(\omega, \gamma_T)]
\]

\[
V(\omega, \gamma_T) \equiv V(\omega, \gamma_H) + V(\omega, \gamma_F)
\]
5.3 North South Trade

Free trade equilibrium

- **Key observation:**
 \[
 \frac{V(\omega, \gamma_H)}{V(\omega', \gamma_H)} \geq \frac{V(\omega, \gamma_F)}{V(\omega', \gamma_F)}, \text{ for all } \omega > \omega' \Rightarrow \frac{V(\omega, \gamma_H)}{V(\omega', \gamma_H)} \geq \frac{V(\omega, \gamma_T)}{V(\omega', \gamma_T)} \geq \frac{V(\omega, \gamma_F)}{V(\omega', \gamma_F)}
 \]

- Continent-by-continuum extensions of two-by-two HO results:

 1. **Changes in skill-intensities:**
 \[
 M(\omega, \gamma_H) \leq M(\omega, \gamma_T) \leq M(\omega, \gamma_F), \text{ for all } \omega
 \]

 2. **Strong Stolper-Samuelson effect:**
 \[
 \frac{w(\omega, \gamma_H)}{w(\omega', \gamma_H)} \leq \frac{w(\omega, \gamma_T)}{w(\omega', \gamma_T)} \leq \frac{w(\omega, \gamma_F)}{w(\omega', \gamma_F)}, \text{ for all } \omega > \omega'
 \]
5.3 North South Trade
Other Predictions

- North-South trade driven by factor demand differences:
 - Same logic gets to the exact opposite results
 - Correlation between factor demand and factor supply considerations matters

- One can also extend analysis to study “North-North” trade:
 - It predicts wage polarization in the more diverse country and wage convergence in the other
Costinot and Vogel (2015, ARE) review a number of extensions:

1. Monopolistic competition (Sampson 2014, AEJ)
2. Vertical specialization (Costinot, Vogel and Wang 2013, RES)
3. Heterogeneous preferences (Redding 2013)
4. Endogenous skills (Blanchard and Willman 2013)
What’s next?

Theory:
- Learning by doing (build on GRH 2010?)
- Labor market frictions (build on Teulings 2003?)
- Endogenous technology adoption

Empirics:
- Revisiting the consequences of trade liberalization (Adao 2016)
- Parametric applications with extreme value distributions?
- More flexible approaches?