14.581 International Trade - Lecture 3: Ricardian Theory (II)—

Putting Ricardo to Work

- Ricardian model has long been perceived has useful pedagogic tool, with little empirical content:
- Great to explain undergrads why there are gains from trade
- But grad students should study richer models (Feenstra's first textbook had a total of 3 pages on the Ricardian model!)
- Eaton and Kortum (2002) have lead to "Ricardian revival"
- Same basic idea as in Wilson (1980): Who cares about the pattern of trade for counterfactual analysis?
- But more structure: Small number of parameters, so well-suited for quantitative work
- Goals of this lecture:
(1) Present EK model
(2) Introduce tools for welfare and counterfactual analysis

Basic Assumptions

- N countries, $i=1, \ldots, N$
- Continuum of goods $u \in[0,1]$
- Preferences are CES with elasticity of substitution σ :

$$
U_{i}=\left(\int_{0}^{1} q_{i}(u)^{(\sigma-1) / \sigma} d u\right)^{\sigma /(\sigma-1)}
$$

- One factor of production (labor)
- There may also be intermediate goods (more on that later)
- $c_{i} \equiv$ unit cost of the "common input" used in production of all goods
- Without intermediate goods, c_{i} is equal to wage w_{i} in country i

Basic Assumptions (Cont.)

- Constant returns to scale:
- $Z_{i}(u)$ denotes productivity of (any) firm producing u in country i
- $Z_{i}(u)$ is drawn independently (across goods and countries) from a Fréchet distribution:

$$
\operatorname{Pr}\left(Z_{i} \leq z\right)=F_{i}(z)=e^{-T_{i} z^{-\theta}}
$$

with $\theta>\sigma-1$ (important restriction, see below)

- Since goods are symmetric except for productivity, we can forget about index u and keep track of goods through $\boldsymbol{Z} \equiv\left(Z_{1}, \ldots, Z_{N}\right)$.
- Trade is subject to iceberg costs $d_{n i} \geq 1$
- $d_{n i}$ units need to be shipped from i so that 1 unit makes it to n
- All markets are perfectly competitive

Four Key Results

A - The Price Distribution

- Let $P_{n i}(\boldsymbol{Z}) \equiv c_{i} d_{n i} / Z_{i}$ be the unit cost at which country i can serve a good \boldsymbol{Z} to country n and let $G_{n i}(p) \equiv \operatorname{Pr}\left(P_{n i}(\boldsymbol{Z}) \leq p\right)$. Then:

$$
G_{n i}(p)=\operatorname{Pr}\left(Z_{i} \geq c_{i} d_{n i} / p\right)=1-F_{i}\left(c_{i} d_{n i} / p\right)
$$

- Let $P_{n}(\boldsymbol{Z}) \equiv \min \left\{P_{n 1}(\boldsymbol{Z}), \ldots, P_{n N}(\boldsymbol{Z})\right\}$ and let $G_{n}(p) \equiv$ $\operatorname{Pr}\left(P_{n}(\boldsymbol{Z}) \leq p\right)$ be the price distribution in country n. Then:

$$
G_{n}(p)=1-\exp \left[-\Phi_{n} p^{\theta}\right]
$$

where

$$
\Phi_{n} \equiv \sum_{i=1}^{N} T_{i}\left(c_{i} d_{n i}\right)^{-\theta}
$$

Four Key Results

A - The Price Distribution (Cont.)

- To show this, note that (suppressing notation \boldsymbol{Z} from here onwards)

$$
\begin{aligned}
\operatorname{Pr}\left(P_{n}\right. & \leq p)=1-\Pi_{i} \operatorname{Pr}\left(P_{n i} \geq p\right) \\
& =1-\Pi_{i}\left[1-G_{n i}(p)\right]
\end{aligned}
$$

- Using

$$
G_{n i}(p)=1-F_{i}\left(c_{i} d_{n i} / p\right)
$$

then

$$
\begin{aligned}
1-\Pi_{i}\left[1-G_{n i}(p)\right]= & 1-\Pi_{i} F_{i}\left(c_{i} d_{n i} / p\right) \\
& =1-\Pi_{i} e^{-T_{i}\left(c_{i} d_{n i}\right)^{-\theta} p^{\theta}}
\end{aligned}
$$

$$
=1-e^{-\Phi_{n} p^{\theta}}
$$

Four Key Results

B - The Allocation of Purchases

- Consider a particular good. Country n buys the good from country i if $i=\arg \min \left\{p_{n 1}, \ldots, p_{n N}\right\}$. The probability of this event is simply country i 's contribution to country n 's price parameter Φ_{n},

$$
\pi_{n i}=\frac{T_{i}\left(c_{i} d_{n i}\right)^{-\theta}}{\Phi_{n}}
$$

- To show this, note that

$$
\pi_{n i}=\operatorname{Pr}\left(P_{n i} \leq \min _{s \neq i} P_{n s}\right)
$$

- If $P_{n i}=p$, then the probability that country i is the least cost supplier to country n is equal to the probability that $P_{n s} \geq p$ for all $s \neq i$

Four Key Results

B - The Allocation of Purchases (Cont.)

- The previous probability is equal to

$$
\Pi_{s \neq i} \operatorname{Pr}\left(P_{n s} \geq p\right)=\Pi_{s \neq i}\left[1-G_{n s}(p)\right]=e^{-\Phi_{n}^{-i} p^{\theta}}
$$

where

$$
\Phi_{n}^{-i}=\sum_{s \neq i} T_{i}\left(c_{i} d_{n i}\right)^{-\theta}
$$

- Now we integrate over this for all possible p^{\prime} s times the density $d G_{n i}(p)$ to obtain

$$
\begin{aligned}
\int_{0}^{\infty} e^{-\Phi_{n}^{-i} p^{\theta}} & T_{i}\left(c_{i} d_{n i}\right)^{-\theta} \theta p^{\theta-1} e^{-T_{i}\left(c_{i} d_{n i}\right)^{-\theta} p^{\theta}} d p \\
= & \left(\frac{T_{i}\left(c_{i} d_{n i}\right)^{-\theta}}{\Phi_{n}}\right) \int_{0}^{\infty} \theta \Phi_{n} e^{-\Phi_{n} p^{\theta}} p^{\theta-1} d p \\
& =\pi_{n i} \int_{0}^{\infty} d G_{n}(p) d p=\pi_{n i}
\end{aligned}
$$

Four Key Results

B - The Allocation of Purchases (Cont.)

- Close connection between EK and McFadden's logit model
- Take heteorogeneous consumers, indexed by u, with utility $U_{n}(u)$ from consuming good i :

$$
U_{i}(u)=U_{i}-p_{i}+\varepsilon_{i}(u)
$$

with $\varepsilon_{i}(u)$ i.i.d from Gumbel distribution:

$$
\operatorname{Pr}\left(\varepsilon_{i}(u) \leq \varepsilon\right)=\exp (-\exp (-\theta \varepsilon))
$$

- Logit: for each consumer u, choose good i that maximizes $U_{i}(u) \Rightarrow$

$$
\pi_{i}=\frac{\exp \left[\theta\left(U_{i}-p_{i}\right)\right]}{\sum_{j} \exp \left[\theta\left(U_{j}-p_{j}\right)\right]}
$$

- EK: for each good u, choose source country i that minimizes $\ln p_{i}(u)=\ln c_{i}-\ln Z_{i}(u)$. Then $\ln ($ Fréchet $)=$ Gumbel \Rightarrow

$$
\pi_{i}=\frac{\exp \left[\theta\left(-\ln c_{i}\right)\right]}{\sum_{j} \exp \left[\theta\left(-\ln c_{j}\right)\right]}=\frac{c_{i}^{-\theta}}{\sum_{j} c_{j}^{-\theta}}
$$

Four Key Results

C - The Conditional Price Distribution

- The price of a good that country n actually buys from any country i also has the distribution $G_{n}(p)$.
- To show this, note that if country n buys a good from country i it means that i is the least cost supplier. If the price at which country i sells this good in country n is q, then the probability that i is the least cost supplier is

$$
\Pi_{s \neq i} \operatorname{Pr}\left(P_{n i} \geq q\right)=\Pi_{s \neq i}\left[1-G_{n s}(q)\right]=e^{-\Phi_{n}^{-i} q^{\theta}}
$$

- The joint probability that country i has a unit cost q of delivering the good to country n and is the the least cost supplier of that good in country n is then

$$
e^{-\Phi_{n}^{-i} q^{\theta}} d G_{n i}(q)
$$

Four Key Results

C - The Conditional Price Distribution (Cont.)

- Integrating this probability $e^{-\Phi_{n}^{-i} q^{\theta}} d G_{n i}(q)$ over all prices $q \leq p$ and using $G_{n i}(q)=1-e^{-T_{i}\left(c_{i} d_{n i}\right)^{-\theta} p^{\theta}}$ then

$$
\left.\begin{array}{l}
\int_{0}^{p} e^{-\Phi_{n}^{-i} q^{\theta}} d G_{n i}(q) \\
=\int_{0}^{p} e^{-\Phi_{n}^{-i} q^{\theta}} \theta T_{i}\left(c_{i} d_{n i}\right)^{-\theta} q^{\theta-1} e^{-T_{i}\left(c_{i} d_{n i}\right)^{-\theta} p^{\theta}} d q \\
\quad=\left(\frac{T_{i}\left(c_{i} d_{n i}\right)^{-\theta}}{\Phi_{n}}\right) \int_{0}^{p} e^{-\Phi_{n} q^{\theta}} \theta \Phi_{n} q^{\theta-1} d q
\end{array}\right] \begin{aligned}
& =\pi_{n i} G_{n}(p)
\end{aligned}
$$

- Given that $\pi_{n i} \equiv$ probability that for any particular good country i is the least cost supplier in n, then conditional distribution of the price charged by i in n for the goods that i actually sells in n is

$$
\frac{1}{\pi_{n i}} \int_{0}^{p} e^{-\Phi_{n}^{-i} q^{\theta}} d G_{n i}(q)=G_{n}(p)
$$

Four Key Results

C - The Conditional Price Distribution (Cont.)

- In Eaton and Kortum (2002):
(1) All the adjustment is at the extensive margin: countries that are more distant, have higher costs, or lower $T^{\prime} s$, simply sell a smaller range of goods, but the average price charged is the same.
(2) The share of spending by country n on goods from country i is the same as the probability $\pi_{n i}$ calculated above.
- We will establish a similar property in models of monopolistic competition with Pareto distributions of firm-level productivity

Four Key Results

D - The Price Index

- The exact price index for a CES utility with elasticity of substitution $\sigma<1+\theta$, defined as

$$
p_{n} \equiv\left(\int_{0}^{1} p_{n}(u)^{1-\sigma} d u\right)^{1 /(1-\sigma)}
$$

is given by

$$
p_{n}=\gamma \Phi_{n}^{-1 / \theta}
$$

where

$$
\gamma=\left[\Gamma\left(\frac{1-\sigma}{\theta}+1\right)\right]^{1 /(1-\sigma)}
$$

where Γ is the Gamma function, i.e. $\Gamma(a) \equiv \int_{0}^{\infty} x^{a-1} e^{-x} d x$.

Four Key Results

D - The Price Index (Cont.)

- To show this, note that

$$
\begin{aligned}
p_{n}^{1-\sigma} & =\int_{0}^{1} p_{n}(u)^{1-\sigma} d u= \\
\int_{0}^{\infty} p^{1-\sigma} d G_{n}(p) & =\int_{0}^{\infty} p^{1-\sigma} \Phi_{n} \theta p^{\theta-1} e^{-\Phi_{n} p^{\theta}} d p
\end{aligned}
$$

- Defining $x=\Phi_{n} p^{\theta}$, then $d x=\Phi_{n} \theta p^{\theta-1}, p^{1-\sigma}=\left(x / \Phi_{n}\right)^{(1-\sigma) / \theta}$, and

$$
\begin{aligned}
p_{n}^{1-\sigma}=\int_{0}^{\infty}\left(x / \Phi_{n}\right)^{(1-\sigma) / \theta} e^{-x} d x & \\
& =\Phi_{n}^{-(1-\sigma) / \theta} \int_{0}^{\infty} x^{(1-\sigma) / \theta} e^{-x} d x \\
& =\Phi_{n}^{-(1-\sigma) / \theta} \Gamma\left(\frac{1-\sigma}{\theta}+1\right)
\end{aligned}
$$

- This implies $p_{n}=\gamma \Phi_{n}^{-1 / \theta}$ with $\frac{1-\sigma}{\theta}+1>0$ or $\sigma-1<\theta$ for gamma function to be well defined

Equilibrium

- Let $X_{n i}$ be total spending in country n on goods from country i
- Let $X_{n} \equiv \sum_{i} X_{n i}$ be country n 's total spending
- We know that $X_{n i} / X_{n}=\pi_{n i}$, so

$$
\begin{equation*}
X_{n i}=\frac{T_{i}\left(c_{i} d_{n i}\right)^{-\theta}}{\sum_{j} T_{j}\left(w_{j} d_{n j}\right)^{-\theta}} X_{n} \tag{*}
\end{equation*}
$$

- Suppose that there are no intermediate goods so that $c_{i}=w_{i}$.
- In equilibrium, total income in country i must be equal to total spending on goods from country i so

$$
w_{i} L_{i}=\sum_{n} X_{n i}
$$

- Trade balance further requires $X_{n}=w_{n} L_{n}$ so that

$$
w_{i} L_{i}=\sum_{n} \frac{T_{i}\left(w_{i} d_{n i}\right)^{-\theta}}{\sum_{j} T_{j}\left(w_{j} d_{n j}\right)^{-\theta}} w_{n} L_{n}
$$

Equilibrium (Cont.)

- This provides system of $N-1$ independent equations (Walras' Law) that can be solved for wages $\left(w_{1}, \ldots, w_{N}\right)$ up to a choice of numeraire
- Everything is as if countries were exchanging labor
- Fréchet distributions imply that labor demands are iso-elastic
- Armington model leads to similar eq. conditions under assumption that each country is exogenously specialized in a differentiated good
- In the Armington model, the labor demand elasticity simply coincides with elasticity of substitution σ.
- See Anderson and van Wincoop (2003)
- Iso-elastic case is what trade economists refer to as a "'gravity model" with $\left({ }^{*}\right)=$ '"gravity equation"
- We'll come back to gravity models many times in this class

Gains from Trade

- Consider again the case where $c_{i}=w_{i}$
- From (*), we know that

$$
\pi_{n n}=\frac{X_{n n}}{X_{n}}=\frac{T_{n} w_{n}^{-\theta}}{\Phi_{n}}
$$

- We also know that $p_{n}=\gamma \Phi_{n}^{-1 / \theta}$, so real wages are equal to

$$
\omega_{n} \equiv w_{n} / p_{n}=\gamma^{-1} T_{n}^{1 / \theta} \pi_{n n}^{-1 / \theta}
$$

- Under autarky we have $\omega_{n}^{A}=\gamma^{-1} T_{n}^{1 / \theta}$, hence the gains from trade are given by

$$
G T_{n} \equiv \omega_{n} / \omega_{n}^{A}=\pi_{n n}^{-1 / \theta}
$$

- Trade elasticity θ and share of expenditure on domestic goods $\pi_{n n}$ are sufficient statistics to compute GT

Gains from Trade (Cont.)

- A typical value for $\pi_{n n}$ (manufacturing) is 0.7 . With $\theta=5$ this implies $G T_{n}=0.7^{-1 / 5}=1.074$ or 7.4% gains. Belgium has $\pi_{n n}=0.2$, so its gains are $G T_{n}=0.2^{-1 / 5}=1.38$ or 38%.
- One can also use the previous approach to measure the welfare gains associated with any foreign shock, not just moving to autarky:

$$
\omega_{n}^{\prime} / \omega_{n}=\left(\pi_{n n}^{\prime} / \pi_{n n}\right)^{-1 / \theta}
$$

- For more general counterfactual scenarios, however, one needs to know both $\pi_{n n}^{\prime}$ and $\pi_{n n}$.

Adding an Input-Output Loop

- Imagine that intermediate goods are used to produce a composite good with a CES production function with elasticity $\sigma>1$. This composite good can be either consumed or used to produce intermediate goods (input-output loop).
- Each intermediate good is produced from labor and the composite good with a Cobb-Douglas technology with labor share β. We can then write $c_{i}=w_{i}^{\beta} p_{i}^{1-\beta}$.

Adding an Input-Output Loop (Cont.)

- The analysis above implies

$$
\pi_{n n}=\gamma^{-\theta} T_{n}\left(\frac{c_{n}}{p_{n}}\right)^{-\theta}
$$

and hence

$$
c_{n}=\gamma^{-1} T_{n}^{-1 / \theta} \pi_{n n}^{-1 / \theta} p_{n}
$$

- Using $c_{n}=w_{n}^{\beta} p_{n}^{1-\beta}$ this implies

$$
w_{n}^{\beta} p_{n}^{1-\beta}=\gamma^{-1} T_{n}^{-1 / \theta} \pi_{n n}^{-1 / \theta} p_{n}
$$

so

$$
w_{n} / p_{n}=\gamma^{-1 / \beta} T_{n}^{-1 / \theta \beta} \pi_{n n}^{-1 / \theta \beta}
$$

- The gains from trade are now

$$
\omega_{n} / \omega_{n}^{A}=\pi_{n n}^{-1 / \theta \beta}
$$

- Standard value for β is $1 / 2$ (Alvarez and Lucas, 2007). For $\pi_{n n}=0.7$ and $\theta=5$ this implies $G T_{n}=0.7^{-2 / 5}=1.15$ or 15% gains.

Adding Non-Tradables

- Assume now that the composite good cannot be consumed directly.
- Instead, it can either be used to produce intermediates (as above) or to produce a consumption good (together with labor).
- The production function for the consumption good is Cobb-Douglas with labor share α.
- This consumption good is assumed to be non-tradable.

Adding Non-Tradables (Cont.)

- The price index computed above is now $p_{g n}$, but we care about $\omega_{n} \equiv w_{n} / p_{f n}$, where

$$
p_{f n}=w_{n}^{\alpha} p_{g n}^{1-\alpha}
$$

- This implies that

$$
\omega_{n}=\frac{w_{n}}{w_{n}^{\alpha} p_{g n}^{1-\alpha}}=\left(w_{n} / p_{g n}\right)^{1-\alpha}
$$

- Thus, the gains from trade are now

$$
\omega_{n} / \omega_{n}^{A}=\pi_{n n}^{-\eta / \theta}
$$

where

$$
\eta \equiv \frac{1-\alpha}{\beta}
$$

- Alvarez and Lucas argue that $\alpha=0.75$ (share of labor in services). Thus, for $\pi_{n n}=0.7, \theta=5$ and $\beta=0.5$, this implies $G T_{n}=0.7^{-1 / 10}=1.036$ or 3.6% gains

Comparative statics (Dekle, Eaton and Kortum, 2008)

- Go back to the simple EK model above $(\alpha=0, \beta=1)$. We have

$$
\begin{aligned}
X_{n i} & =\frac{T_{i}\left(w_{i} d_{n i}\right)^{-\theta} X_{n}}{\sum_{i=1}^{N} T_{i}\left(w_{i} d_{n i}\right)^{-\theta}} \\
\sum_{n} X_{n i} & =w_{i} L_{i}
\end{aligned}
$$

- As we have already established, this leads to a system of non-linear equations to solve for wages,

$$
w_{i} L_{i}=\sum_{n} \frac{T_{i}\left(w_{i} d_{n i}\right)^{-\theta}}{\sum_{k} T_{k}\left(w_{k} d_{n k}\right)^{-\theta}} w_{n} L_{n} .
$$

Comparative statics (Dekle, Eaton and Kortum, 2008)

- Consider a shock to labor endowments, trade costs, or productivity. One could compute the original equilibrium, the new equilibrium and compute the changes in endogenous variables.
- But there is a simpler way that uses only information for observables in the initial equilibrium, trade shares and GDP; the trade elasticity, θ; and the exogenous shocks. First solve for changes in wages by solving

$$
\hat{w}_{i} \hat{L}_{i} Y_{i}=\sum_{n} \frac{\pi_{n i} \hat{T}_{i}\left(\hat{w}_{i} \hat{d}_{n i}\right)^{-\theta}}{\sum_{k} \pi_{n k} \hat{T}_{k}\left(\hat{w}_{k} \hat{d}_{n k}\right)^{-\theta}} \hat{w}_{n} \hat{L}_{n} Y_{n}
$$

and then get changes in trade shares from

$$
\hat{\pi}_{n i}=\frac{\hat{T}_{i}\left(\hat{w}_{i} \hat{d}_{n i}\right)^{-\theta}}{\sum_{k} \pi_{n k} \hat{T}_{k}\left(\hat{w}_{k} \hat{d}_{n k}\right)^{-\theta}} .
$$

- From here, one can compute welfare changes by using the formula above, namely $\hat{\omega}_{n}=\left(\hat{\pi}_{n n}\right)^{-1 / \theta}$.

Comparative statics (Dekle, Eaton and Kortum, 2008)

- To show this, note that trade shares are

$$
\pi_{n i}=\frac{T_{i}\left(w_{i} d_{n i}\right)^{-\theta}}{\sum_{k} T_{k}\left(w_{k} d_{n k}\right)^{-\theta}} \text { and } \pi_{n i}^{\prime}=\frac{T_{i}^{\prime}\left(w_{i}^{\prime} d_{n i}^{\prime}\right)^{-\theta}}{\sum_{k} T_{k}^{\prime}\left(w_{k}^{\prime} d_{n k}^{\prime}\right)^{-\theta}} .
$$

- Letting $\hat{x} \equiv x^{\prime} / x$, then we have

$$
\begin{aligned}
& \hat{\pi}_{n i}= \frac{\hat{T}_{i}\left(\hat{w}_{i} \hat{d}_{n i}\right)^{-\theta}}{\sum_{k} T_{k}^{\prime}\left(w_{k}^{\prime} d_{n k}^{\prime}\right)^{-\theta} / \sum_{j} T_{j}\left(w_{j} d_{n j}\right)^{-\theta}} \\
&=\frac{\hat{T}_{i}\left(\hat{w}_{i} \hat{d}_{n i}\right)^{-\theta}}{\sum_{k} \hat{T}_{k}\left(\hat{w}_{k} \hat{d}_{n k}\right)^{-\theta} T_{k}\left(w_{k} d_{n k}\right)^{-\theta} / \sum_{j} T_{j}\left(w_{j} d_{n j}\right)^{-\theta}} \\
&=\frac{\hat{T}_{i}\left(\hat{w}_{i} \hat{d}_{n i}\right)^{-\theta}}{\sum_{k} \pi_{n k} \hat{T}_{k}\left(\hat{w}_{k} \hat{d}_{n k}\right)^{-\theta}}
\end{aligned}
$$

Comparative statics (Dekle, Eaton and Kortum, 2008)

- On the other hand, for equilibrium we have

$$
w_{i}^{\prime} L_{i}^{\prime}=\sum_{n} \pi_{n i}^{\prime} w_{n}^{\prime} L_{n}^{\prime}=\sum_{n} \hat{\pi}_{n i} \pi_{n i} w_{n}^{\prime} L_{n}^{\prime}
$$

- Letting $Y_{n} \equiv w_{n} L_{n}$ and using the result above for $\hat{\pi}_{n i}$ we get

$$
\hat{w}_{i} \hat{L}_{i} Y_{i}=\sum_{n} \frac{\pi_{n i} \hat{T}_{i}\left(\hat{w}_{i} \hat{d}_{n i}\right)^{-\theta}}{\sum_{k} \pi_{n k} \hat{T}_{k}\left(\hat{w}_{k} \hat{d}_{n k}\right)^{-\theta}} \hat{w}_{n} \hat{L}_{n} Y_{n}
$$

- This forms a system of N equations in N unknowns, \hat{w}_{i}, from which we can get \hat{w}_{i} as a function of shocks and initial observables (establishing some numeraire). Here $\pi_{n i}$ and Y_{i} are data and we know $\hat{d}_{n i}, \hat{T}_{i}, \hat{L}_{i}$, as well as θ.

Comparative statics (Dekle, Eaton and Kortum, 2008)

- To compute the implications for welfare of a foreign shock, simply impose that $\hat{L}_{n}=\hat{T}_{n}=1$, solve the system above to get \hat{w}_{i} and get the implied $\hat{\pi}_{n n}$ through

$$
\hat{\pi}_{n i}=\frac{\hat{T}_{i}\left(\hat{w}_{i} \hat{d}_{n i}\right)^{-\theta}}{\sum_{k} \pi_{n k} \hat{T}_{k}\left(\hat{w}_{k} \hat{d}_{n k}\right)^{-\theta}}
$$

and use the formula to get

$$
\hat{\omega}_{n}=\hat{\pi}_{n n}^{-1 / \theta}
$$

- Of course, if it is not the case that $\hat{L}_{n}=\hat{T}_{n}=1$, then one can still use this approach, since it is easy to show that in autarky one has $w_{n} / p_{n}=\gamma^{-1} T_{n}^{1 / \theta}$, hence in general

$$
\hat{\omega}_{n}=\left(\hat{T}_{n}\right)^{1 / \theta} \hat{\pi}_{n n}^{-1 / \theta}
$$

Extensions of EK

- Bertrand Competition: Bernard, Eaton, Jensen, and Kortum (2003)
- Bertrand competition \Rightarrow variable markups at the firm-level
- Measured productivity varies across firms \Rightarrow one can use firm-level data to calibrate model
- Multiple Sectors: Costinot, Donaldson, and Komunjer (2012)
- $T_{i}^{k} \equiv$ fundamental productivity in country i and sector k
- One can use EK's machinery to study pattern of trade, not just volumes
- Non-homothetic preferences: Fieler (2011)
- Rich and poor countries have different expenditure shares
- Combined with differences in θ^{k} across sectors k, one can explain pattern of North-North, North-South, and South-South trade

