Key questions:

1. Why are countries protectionist? Can protectionism ever be “optimal”? Can we explain how trade policies vary across countries, industries, and time?
2. How should trade agreements be designed? Can we explain the main institutional features of actual trade agreements (e.g. WTO, NAFTA, EU)?

In order to shed light on these questions, one needs to take a stand on:

1. Economic environment: What is the market structure? Are there distortions, e.g. unemployment or pollution?
2. Political environment: What is the objective function that governments aim to maximize, e.g. social welfare, welfare of the median voter, political support? What are the trade policy instruments, e.g. import tariffs, quotas, product standards? Are trade policy instruments the only instruments available?
3. Constraints on the set of feasible contracts: Do trade agreements need to be self-enforcing? How costly is it ”to complete” contracts?
We will restrict ourselves to environments such that:

1. All markets are perfectly competitive
2. There are no distortions
3. Governments only care about welfare

Only motive for trade protection is **price manipulation**

- Consumers and firms are price-takers on world markets
- Governments internalize that exports and imports affect prices

We will be focusing on three questions:

1. How should trade taxes vary across countries and industries?
2. Quantitatively how important are the gains from such manipulation?
3. What is the rationale for trade agreements in this environment?
1. A First Look at Unilaterally Optimal Tariffs
Consider a world economy with 2 countries, $c = 1, 2$

There are two goods, $i = 1, 2$, both produced under perfect competition

- good 2 is used as the numeraire, $p_2^w = 1$

Notations:

- $p^c_i \equiv p_1^c / p_2^c$ is relative price in country c
- $p^w \equiv p_1^w / p_2^w$ is “world” (i.e. untaxed) relative price
- $d_i^c (p^c, p^w)$ is demand of good i in country c
- $y_i^c (p^c)$ is supply of good i in country c
Country 1 (2) is a natural importer of good 1 (2):

\[m_1^1 (p^1, p^w) \equiv d_1^1 (p^1, p^w) - y_1^1 (p^1) > 0 \]
\[m_2^2 (p^2, p^w) \equiv d_2^2 (p^2, p^w) - y_2^2 (p^2) > 0 \]
\[x_2^1 (p^1, p^w) \equiv y_2^1 (p^1) - d_2^1 (p^1, p^w) > 0 \]
\[x_1^2 (p^2, p^w) \equiv y_1^2 (p^2) - d_1^2 (p^2, p^w) > 0 \]

Trade is balanced:

\[p^w m_1^1 (p^1, p^w) = x_2^1 (p^1, p^w) \]
\[m_2^2 (p^2, p^w) = p^w x_1^2 (p^2, p^w) \]

Market clearing for good 2 requires:

\[x_2^1 (p^1, p^w) = m_2^2 (p^2, p^w) \quad (1) \]
Both governments can impose an ad-valorem tariff t^c on their imports

$$ p^c_c = (1 + t^c) p^w_c $$

$$ p^c_{-c} = p^w_{-c} $$

Tariffs create a wedge between the world and local prices which implies

$$ p^1 = (1 + t^1) p^w $$

$$ p^2 = p^w / (1 + t^2) $$

Comments:

- If the only taxes are import tariffs, then local prices faced by consumers and producers are the same, as implicitly assumed in our previous slides.
- Equations (1)-(3) implicitly define $p^w \equiv p^w (t^1, t^2)$ and $p^c \equiv p^c (t^c, p^w)$
Both governments are welfare-maximizer. They simultaneously set t^c in order to maximize utility of representative agent

$$\max_{t^c} V^c (p^c, I^c) \equiv V^c [p^c, R^c (p^c) + T^c (p^c, p^w)]$$

(4)

where:

$$R^c (p^c) \equiv \max_y \{p^c_1 y_1 + p^c_2 y_2 | y \text{ feasible}\}$$

$$T^c (p^c, p^w) \equiv t^c p^w m_c^c (p^c, p^w) = \left\{ \begin{array}{ll}
(p^1 - p^w) m_1^1 (p^1, p^w) & \text{if } c = 1 \\
(p^w / p^2 - 1) m_2^2 (p^2, p^w) & \text{if } c = 2
\end{array} \right.$$
Proposition 1 For both countries, unilaterally optimal (Nash) tariffs satisfy

\[t^c = \frac{1}{\varepsilon^{-c}}, \text{ where } \varepsilon^{-c} \equiv \frac{d \ln x^{-c}}{d \ln p^w} \]

Proof:

1. For expositional purposes we focus on country 1. FOC \(\Rightarrow \)

\[
\left(\frac{V_i^1}{V_i^1} \right) \left(\frac{dp^1}{dt^1} \right) + \left(\frac{dR^1}{dp^1} \right) \left(\frac{dp^1}{dt^1} \right) \\
+ \left(\frac{dp^1}{dt^1} - \frac{\partial p^w}{\partial t^1} \right) m_1^1 (p^1, p^w) + t^1 p^w \frac{dm_1^1 (p^1, p^w)}{dt^1} = 0
\]

2. Roy’s identity \(\Rightarrow \) \(\frac{V_i^1}{V_i^1} = -d_1^1 (p^1, p^w) \)

3. Perfect competition \(\Rightarrow \) \(\frac{dR^1}{dp^1} = y_1^1 (p^1, p^w) \)

4. \(1+2+3 \Rightarrow t^1 = \left(\frac{\partial \ln p^w}{\partial t^1} \right) / \left(\frac{d \ln m_1^1 (p^1, p^w)}{dt^1} \right) \)

5. 4 + market clearing, \(m_1^1 (p^1, p^w) = x_1^2 (p^2, p^w) \Rightarrow t^1 = 1/\varepsilon^2 \)
Proposition 1 offers a simple theory of tariff formation:
- tariffs \equiv inverse of the elasticity of foreign export supply
- this is true whether or not the other government is imposing its Nash tariff
- though other government’s tariff does affect elasticity of foreign export supply

In the case of a small open economy, $\frac{\partial p^w}{\partial t_1} = 0 \Rightarrow \varepsilon^2 = +\infty$
- a small open economy never has an incentive to impose a tariff

Import tariffs are intimately related to countries’ market power
- it is countries’ ability to improve their terms-of-trade that lead to strictly positive tariffs

Potential concerns about Proposition 1 as a positive theory:
1. Do we really believe that governments maximize welfare?
2. How many countries are “large” enough to affect their terms-of-trade?
3. Do trade negotiators really care about their terms-of-trade?
2. The Primal Approach
The Primal Approach

- So far we have focused on a specific policy instrument: import tariffs
- It is often easier to proceed in two steps:
 1. Solve for the optimal allocation assuming that governments can directly choose output and consumption
 2. Show how that allocation can be implemented using trade taxes
- Formally, the planning problem of country 1 can be expressed as:

\[
\max_{m_1^1, x_2^1, y_1^1, y_2^1} U^1 \left(y_1^1 + m_1^1, y_2^1 - x_2^1 \right)
\]

subject to:

\[
p^w(m_1^1) m_1^1 - x_2^1 = 0
\]

\[
F \left(y_1^1, y_2^1 \right) \leq 0
\]

- 1st constraint ≡ Trade balance; 2nd constraint ≡ PPF
- \(p^w(m_1^1) \) ≡ inverse of country’s 2 export supply curve, i.e., world price at which country 2 is willing to export \(m_1^1 \) units of good 1 to country 1
The Primal Approach
Optimal Wedges

- FOC associated with m^1 imply
 \[
 U^1_1 = \lambda \left(p^w + m^1 \frac{dp^w}{dm^1} \right)
 \]
 \[
 U^1_2 = \lambda
 \]

- **Intuition:**
 - Country 1 has monopsony power
 - MC of imports $\equiv p^w +$ price increase infra-marginal units $m^1 \frac{dp^w}{dm^1}$
 - At the optimum, there is a “wedge” between MRS and world price
 \[
 \frac{U^1_1}{U^1_2} = p^w \left(1 + \frac{d \ln p^w_1}{d \ln m^1_1} \right)
 \]
 - The more elastic world prices are, the bigger the wedge is
In a competitive equilibrium, $U_1^\xi / U_2^\xi \equiv$ domestic price in country 1

- so optimum can be implemented by creating a wedge of size $1 + d \ln p_{1w} / d \ln m_1^1$ between the domestic price and the world price

Two natural candidates:

- Import tariff $t^1 = d \ln p_{1w} / d \ln m_1^1 = 1 / \epsilon^2 \Rightarrow \left(U_1^1 / U_2^1 \right)_{optimum} = p^w (1 + t_1)$

- Export tax equal to $\tau_1 = 1 / (1 + \epsilon^2) \Rightarrow \left(U_1^1 / U_2^1 \right)_{optimum} = p^w / (1 - \tau_1)$

Many other possible instruments:

- Any combination of import tariffs and export taxes s.t.
 $\left(1 + t_1 \right) / \left(1 - \tau_1 \right) = 1 + d \ln p_{1w} / d \ln m_1^1$ (Lerner Symmetry)

- Identical consumption and production taxes

- Quantitative restrictions
The Primal Approach
Foreign Export Supply versus Foreign Import Demand

- Same result applies if we focus on country 2's import demand curve
- Let $\tilde{p}^w (x^1_2) \equiv$ inverse of country 2’s import demand curve
 - Trade balance in country 2 requires $p^w (x^2_1 (p^w)) = m^2_2 (p^w)$
 - Thus elasticities of foreign export supply, $\varepsilon^2 \equiv \frac{d \ln(x^2_1)}{d \ln p^w} (= \frac{1}{d \ln p^w / d \ln m^1_1})$, and import demand, $\eta^2 \equiv \frac{d \ln(m^2_2)}{d \ln p^w} (= \frac{1}{d \ln \tilde{p}^w / d \ln(x^1_2)})$ satisfy $1 + \varepsilon^2 = \eta^2$.
- Using the same logic as before, one can show that
 \[
 \frac{U^1_1}{U^1_2} = \frac{p^w}{1 - (d \ln \tilde{p}^w / d \ln(x^1_2))}
 \]
 - Thus optimal export tax should be equal to
 \[
 \tilde{\tau}_1 = \frac{d \ln \tilde{p}^w}{d \ln(x^1_2)} = \frac{1}{\eta^2} = \frac{1}{1 + \varepsilon^2} = \tau_1.
 \]
Two-good model is simple because only one relative price to keep track of

How do the previous insights generalize to many goods?

- If p^w_i only depends on m_i, then results trivially extend (e.g. quasi-linear preferences abroad + specific factor model)
- But in general, one would need to take into account that world price of good i may also depend on imports of other goods (Dixit 1985, Bond 1990)
- In such situations, export subsidies may be optimal (Feenstra 1986)

Simple cases that can be work out analytically:

- Additive separability (natural in macro context) + endowment economy; see Costinot, Lorenzoni, and Werning (2014)
- CES preferences (natural in trade) + Ricardian economy; see Costinot, Donaldson, Vogel, and Werning (2015) [next lecture]
3. Global Inefficiencies
Are Unilaterally Optimal Tariffs Pareto-Efficient?

Following Bagwell and Staiger (1999), we introduce

\[W^c (p^c, p^w) \equiv V^c [p^c, R^c (p^c) + T^c (p^c, p^w)] \]

Differentiating the previous expression we obtain

\[dW^c = \left[W^c_{p^c} \left(\frac{dp^c}{dt^c} \right) + W^c_{p^w} \left(\frac{dp^w}{dt^c} \right) \right] dt^c + W^c_{p^w} \left(\frac{\partial p^w}{\partial t^{-c}} \right) dt^{-c} \]

The slope of the iso-welfare curves can thus be expressed as

\[
\left(\frac{dt^1}{dt^2} \right)_{dW^1=0} = - \frac{W^1_{p^w} \left(\frac{\partial p^w}{\partial t^2} \right)}{W^1_{p^1} \left(\frac{dp^1}{dt^1} \right) + W^1_{p^w} \left(\frac{\partial p^w}{\partial t^1} \right)} \quad (5)
\]

\[
\left(\frac{dt^1}{dt^2} \right)_{dW^2=0} = - \frac{W^2_{p^w} \left(\frac{\partial p^w}{\partial t^2} \right)}{W^2_{p^2} \left(\frac{dp^2}{dt^2} \right) + W^2_{p^w} \left(\frac{\partial p^w}{\partial t^1} \right)} \quad (6)
\]
Proposition 2 If countries are “large,” unilateral tariffs are not Pareto-efficient.

Proof:

1. By definition, unilateral (Nash) tariffs satisfy

\[W^c_p \left(\frac{dp^c}{dt^c} \right) + W^w_p \left(\frac{dp^w}{dt^c} \right) = 0, \]

2. If \(\left(\frac{dp^w}{dt^1} \right) \) and \(\left(\frac{dp^w}{dt^2} \right) \neq 0 \), then \(1 + (5) \) and \(6 \) \(\Rightarrow \)

\[\left(\frac{dt^1}{dt^2} \right)_{dW^1=0} = +\infty \neq 0 = \left(\frac{dt^1}{dt^2} \right)_{dW^2=0} \]

3. Proposition 2 directly derives from 2 and the fact that Pareto-efficiency requires

\[\left(\frac{dt^1}{dt^2} \right)_{dW^1=0} = \left(\frac{dt^1}{dt^2} \right)_{dW^2=0} \]
Are Unilaterally Optimal Tariffs Pareto-Efficient?

Graphical analysis (Johnson 1953-54)

- N corresponds to the unilateral (Nash) tariffs
- E-E corresponds to the contract curve
- If countries are too asymmetric, free trade may not be on contract curve
What is the Source of the Inefficiency?

- The *only* source of the inefficiency is the terms-of-trade externality
- Formally, suppose that governments were to set their tariffs ignoring their ability to affect world prices:

\[
W_{p_1}^1 = W_{p_2}^2 = 0
\]

- Then Equations (5) and (6) immediately imply

\[
\left(\frac{dt^1}{dt^2} \right)_{dW^1=0} = - \left(\frac{\partial p^w}{\partial t^2} \right) / \left(\frac{\partial p^w}{\partial t^1} \right) = \left(\frac{dt^1}{dt^2} \right)_{dW^1=0}
\]

- **Intuition:**
 - In this case, both countries act like small open economies
 - As a result, \(t^1 = t^2 = 0 \), which is efficient from a world standpoint

- **Question:**
 - *How much does this rely on the fact that governments maximize welfare?*
4. Quantitative Issues
The simplest place to start to get a sense of the quantitative importance of terms-of-trade motive is to go back to Armington model.

In line with previous analysis assume that:

- there are only two countries, 1 and 2
- country 1 is endowed with e_1 units of good 2 (so that it is still a natural importer of good 1)
- country 2 is endowed with e_2 units of good 1 (so that it is still a natural importer of good 2)

Representative agents have CES utility with elasticity σ:

$$U^c = (d_1^c)^{\frac{\sigma-1}{\sigma}} + (d_2^c)^{\frac{\sigma-1}{\sigma}}$$

Trade between 1 and 2 is subject to iceberg trade costs $\delta_{12} \geq 1$.
Unilaterally Optimal Tariff

- Armington model with two countries is special case of models studied before. So we only need to compute elasticity of country 2's export supply.
- Given endowment and CES assumptions we have

\[x_1^2 (p^w) = e^2 - \frac{(p^w e^2) (p^w)^{-\sigma}}{(\delta^{12})^{1-\sigma} + (p^w)^{1-\sigma}} = \frac{e^2 (\delta^{12})^{1-\sigma}}{(\delta^{12})^{1-\sigma} + (p^w)^{1-\sigma}} \]

- Country 2’s export supply is thus given by

\[\varepsilon^2 = \frac{d \ln x_1^2}{d \ln p^w} = \frac{(\sigma - 1) (p^w)^{1-\sigma}}{(\delta^{12})^{1-\sigma} + (p^w)^{1-\sigma}} \]

- Let \(\lambda^2 \equiv \frac{p^w d_1^2}{p^w e^2} = \frac{(p^w)^{1-\sigma}}{(\delta^{12})^{1-\sigma} + (p^w)^{1-\sigma}} \) denote country 2’s share of expenditure on its own good.
- Using this notation, the optimal tariff in country 1 is given by

\[t^1 = \frac{1}{(\sigma - 1) \lambda^2} \]
Previous formula offers simple way to quantify optimal tariff:

- From gravity equation we know that $\sigma - 1 \simeq 5$
- From most countries, ROW is almost under autarky, $\lambda^2 \simeq 1$
- Thus previous formula suggests $t^1 \simeq 20\%$

Next we will go through quantitative results from Costinot and Rodriguez-Clare (2013) in more general gravity models

- Results suggest that this is not a bad approximation
- See also Alvarez and Lucas (2007) and Ossa (2011a, 2011b)

Analytically, one can show that previous formula also applies to gravity models featuring monopolistic competition with homogeneous firms à la Krugman (1980); see Gros (1987) and Helpman and Krugman (1989)

- Compared to analysis in ACR, we only have two countries, no firm heterogeneity, no tariff revenues in country 2. Not clear that equivalence would still hold without these strong assumptions
What Do Unilaterally Optimal Tariffs Look Like?
Costinot and Rodriguez-Clare (2013)

The graph shows the welfare changes relative to a 0% tariff regime as a function of the tariff rate. The x-axis represents the tariff rate (%), and the y-axis represents the welfare changes relative to a 0% tariff regime. The graph includes lines for different countries: USA (blue), France (green), Portugal (red), and Ireland (cyan). The lines indicate how welfare changes as the tariff rate increases.
Welfare Effect of Tariffs under Perfect Competition

<table>
<thead>
<tr>
<th>Country</th>
<th>Unilateral US 40% Tariff</th>
<th>Uniform Worldwide 40% Tariff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without Intermediates</td>
<td>With Dispersion</td>
</tr>
<tr>
<td></td>
<td>One Sector</td>
<td>Multiple Sectors</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AUS</td>
<td>-0.10%</td>
<td>-0.13%</td>
</tr>
<tr>
<td>AUT</td>
<td>-0.09%</td>
<td>-0.06%</td>
</tr>
<tr>
<td>BEL</td>
<td>-0.16%</td>
<td>-0.12%</td>
</tr>
<tr>
<td>BRA</td>
<td>-0.10%</td>
<td>-0.08%</td>
</tr>
<tr>
<td>CAN</td>
<td>-1.20%</td>
<td>-1.16%</td>
</tr>
<tr>
<td>CHN</td>
<td>-0.22%</td>
<td>-0.14%</td>
</tr>
<tr>
<td>CZE</td>
<td>-0.05%</td>
<td>-0.03%</td>
</tr>
<tr>
<td>DEU</td>
<td>-0.16%</td>
<td>-0.10%</td>
</tr>
<tr>
<td>DNK</td>
<td>-0.20%</td>
<td>-0.09%</td>
</tr>
<tr>
<td>ESP</td>
<td>-0.06%</td>
<td>-0.04%</td>
</tr>
<tr>
<td>FIN</td>
<td>-0.09%</td>
<td>-0.04%</td>
</tr>
<tr>
<td>FRA</td>
<td>-0.09%</td>
<td>-0.07%</td>
</tr>
<tr>
<td>GBR</td>
<td>-0.16%</td>
<td>-0.15%</td>
</tr>
<tr>
<td>GRC</td>
<td>-0.08%</td>
<td>-0.02%</td>
</tr>
<tr>
<td>HUN</td>
<td>-0.13%</td>
<td>-0.06%</td>
</tr>
<tr>
<td>IDN</td>
<td>-0.09%</td>
<td>-0.06%</td>
</tr>
<tr>
<td>IND</td>
<td>-0.16%</td>
<td>-0.13%</td>
</tr>
<tr>
<td>IRL</td>
<td>-0.91%</td>
<td>-0.56%</td>
</tr>
<tr>
<td>ITA</td>
<td>-0.07%</td>
<td>-0.03%</td>
</tr>
<tr>
<td>JPN</td>
<td>-0.11%</td>
<td>-0.06%</td>
</tr>
<tr>
<td>KOR</td>
<td>-0.21%</td>
<td>-0.14%</td>
</tr>
<tr>
<td>MEX</td>
<td>-1.08%</td>
<td>-0.87%</td>
</tr>
<tr>
<td>NLD</td>
<td>-0.22%</td>
<td>-0.16%</td>
</tr>
<tr>
<td>POL</td>
<td>-0.04%</td>
<td>-0.03%</td>
</tr>
<tr>
<td>PRT</td>
<td>-0.06%</td>
<td>-0.05%</td>
</tr>
<tr>
<td>ROM</td>
<td>-0.03%</td>
<td>0.00%</td>
</tr>
<tr>
<td>RUS</td>
<td>-0.03%</td>
<td>-0.06%</td>
</tr>
<tr>
<td>SVK</td>
<td>-0.05%</td>
<td>-0.01%</td>
</tr>
<tr>
<td>SVN</td>
<td>-0.06%</td>
<td>-0.04%</td>
</tr>
<tr>
<td>SWE</td>
<td>-0.15%</td>
<td>-0.08%</td>
</tr>
<tr>
<td>TUR</td>
<td>-0.03%</td>
<td>-0.01%</td>
</tr>
<tr>
<td>TWN</td>
<td>-0.46%</td>
<td>-0.34%</td>
</tr>
<tr>
<td>USA</td>
<td>0.21%</td>
<td>0.41%</td>
</tr>
<tr>
<td>ROW</td>
<td>-0.49%</td>
<td>-0.43%</td>
</tr>
<tr>
<td>Average</td>
<td>-0.20%</td>
<td>-0.14%</td>
</tr>
</tbody>
</table>
Welfare gains from unilateral import tariffs over surprisingly large range

- In one-sector Armington model, unilaterally optimal tariff $\approx \frac{1}{\text{trade elasticity}}$
- Trade elasticity of 5 implies optimal tariffs of 20% around the world
- It takes import tariffs to be as high as 50% to get back to the welfare levels observed under free trade

Welfare effects of large unilateral tariffs on other countries minimal

Questions:

- Are these numbers we can believe in?
- Is there something in the data and absent from baseline gravity model that would dramatically affect these numbers?