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Today’s Plan

1 A Refresher on Growth Accounting

2 Asymptotic Results

Gabaix (ECTA, 2011)
Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (ECTA, 2012)

3 Micro to Macro Accounting

di Giovanni, Levchenko and Mejean (ECTA, 2014)
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1. A Refresher on Growth Accounting
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What is an Aggregate Productivity Shock?

Consider an efficient economy with real GDP given by:

Y (L,K , z) = max
c,l ,x

U(c1, ..., cn)

s.t. :ci + ∑
j

xij ≤ zi fi (li , ki , x1i , ..., xni )

∑
i

li ≤ L

∑
i

ki ≤ K

where L and K are labor and capital stocks
The Envelope Theorem implies:

dY = ∑
i

µi fi (li , ki , x1i , ..., xni )dzi + λLdL+ λKdK

where:
µi = lagrange multiplier associated with good constraint (price of good i)
λL = lagrange multiplier associated with labor constraint (price of labor)
λK = lagrange multiplier associated with capital constraint (price of capital)
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What is an Aggregate Productivity Shock?

Taking logs:
d lnY = sLd ln L+ sKd lnK + ∑

i

vid ln zi

where:

sL = λLL
Y = labor share

sK = λKK
Y = capital share

vi =
µi zi fi (li ,ki ,x1i ,...,xni )

Y = sector i “share” (numerator is gross output, not
value added. So ∑i vi may not be equal to one.)

Let us now define an aggregate productivity shock, d lnZ , as the percentage
change in real GDP, holding primary factors fixed:

d lnZ = d lnY − sLd ln L− sKd lnK
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What is an Aggregate Productivity Shock?

By definition, d lnZ is the Solow residual

And from our previous algebra, we immediately get:

d lnZ = ∑
i

vid ln zi

Up to a first-order approximation, changes in aggregate productivity are equal
to the average of “good-specific” productivity shocks

This specific application of the Envelope Theorem is often referred to as
Hulten’s (RES, 1978) Theorem

One can also relax no-joint productiion and Hicks-neutral technical change
Restriction to two primary factors plays no role. By reinterpreting goods and
factors, one can also study trade costs shocks in a world economy. See e.g.
Burstein and Cravino (AEJ, 2015)
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2. Asymptotic Results
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Gabaix (2011)
The Standard Case for the Irrelevance of Idiosyncratic Shocks

From now on, let us ignore variation in primary factors so that aggregate
volatility—meaning the volatility of log GDP—is equal to the volatility of
aggregate productivity—meaning the volatility of d lnZ :

σGDP = σZ

Suppose that:

all sectors/firms are initially of identical size vi = Si/S = 1/n
all sector/firm shocks d ln zi are independent with standard deviation σzi = σ

Then from Hulten’s Theorem, we get:

σGDP =
√

∑
i

(vi )2σ2
zi
=

σ√
n
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Gabaix (2011)
The Standard Case for the Irrelevance of Idiosyncratic Shocks

Gabaix (2011) notes that in the US data:

σ = 12%
n = 106

This simple calibration leads to:

σGDP =
σ√
n
= 0.012%

From this expression, the “conventional wisdom”—e.g., as articulated by
Lucas (Theories of Business Cycles, 1984)—can be understood: σGDP is
trivial—no aggregate fluctuations without aggregate shocks.

14.582 (Week 9) Aggregate Fluctuations Fall 2017 9 / 45



Gabaix (2011)
The Standard Case for the Irrelevance of Idiosyncratic Shocks

More generally, as long as the law of large number applies, we should expect
the σGDP to decrease at the same rate as 1/

√
n

Proposition: Consider an economy with n firms whose sizes Si are drawn
from a distribution with finite variance. Suppose that they all have the same
volatility σ. Then, as n→ ∞, σGDP follows:

σGDP ∼
E [S2]1/2

E [S ]

σ√
n
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Gabaix (2011)
The Standard Case for the Irrelevance of Idiosyncratic Shocks

Proof:
1 From Hulten’s Theorem, we know that:

σGDP = σh

with h =
√

∑i (vi )
2 and vi = Si/ ∑i (Si ) in Gabaix’s endowment economy

2 Let us rearrange the herfindahl index h as

n1/2h =
(n−1 ∑i (Si )

2)1/2

n−1 ∑i (Si )

3 Applying the LLN to the numerator and denominator, we get

n1/2h→ E [S2]1/2

E [S ]

4 Proposition follows from 1 and 3.
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Gabaix (2011)
But firm size distribution has fat tails.
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Gabaix (2011)
Why Idiosyncratic Shocks Matter

Proposition: Consider an economy with n firms whose sizes are drawn from
a power law distribution

P(S > x) = ax−ζ

with exponent ζ ≥ 1. Suppose that firms all have the same volatility σ.
Then, as n→ ∞ goes to infinity, σGDP follows:

σGDP ∼
vζ

ln n
σ for ζ = 1

σGDP ∼
vζ

n1−1/ζ
σ for 1 < ζ < 2

σGDP ∼
vζ

n1/2
σ for ζ ≥ 2
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Comments

One can think of previous asymptotic results as providing a simple theory of
distribution of firm size, i.e. a theory of {vi}
But alternatively, one could simply look at {vi} in the data

Recall that from Hulten’s Theorem, we get:

σGDP = σh

where h is the herfindahl of the economy

In the US data, h = 5.3%. With σ = 12%, we therefore immediately get:

σGDP = σh = 0.63%� 0.012%
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Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2012)

Simple model of input-output linkages.

Static, perfectly competitive economy with n industries.

Cobb-Douglas production function for each industry:

yi = zi li
α

n

∏
j=1

x
aij
ij , i ∈ {1, .., n}

Cobb-Douglas utility:

u(c1, c2, ..., cn) =
n

∏
i=1

c1/n
i ,
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Aggregate Implications

Since the model is log-linear, first-order approximation is exact.

Log GDP satisfies:
y ≡ log(GDP) = v′ln z,

where vi still represents the “share” of sector i

vi =
pixi

α ∑n
j=1 pjxj

.

v also corresponds to the influence vector or the vector of Bonacich
centrality indices defined as

vi ≡
n

∑
j=1

1

n
hji ,

where hij denotes entries of the Leontief inverse.
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Irrelevance of Micro Shocks Redux

We say that the network is regular if di = d for each i , where di = ∑n
j=1 aji .

Each sector has a similar degree of importance as a supplier to other sectors.

Examples of regular networks:

rings: the most “sparse” input-output matrix, where each sector grows all of
its inputs from a single other sector.
complete graphs: where each sector equally draws inputs from all other
sectors.
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Irrelevance of Micro Shocks Redux

Suppose again that σi = σ for each i .

Then we have that for all regular networks:

σGDP =
σ√
n

(see also Dupor, Journal of Monetary Economics,1999).

Conditional on sales, the shape of the network does not matter

In all regular networks, sales are equal across firms
Rings—which one might have conjectured to be prone to “domino effects”–do
not lead to higher aggregate volatility

For the reasons discussed before, this implies that idiosyncratic shocks have a
negligible effect on aggregate volatility in regular networks
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Generalization

We say that a sequence of economies is balanced if maxi di < c for some c .

This is clearly much weaker than regularity.

It can be shown that, for any sequence of balanced economies,

σagg ∼
1√
n

.

Once again rings and complete networks are equally stable

sparseness of the input-output matrix has little to do with aggregate volatility
sales are the sufficient statistics
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Asymmetric Networks Are Fragile

However, network irrelevance is not generally correct, provided that network
leads to very asymmetric distribution of sales.

The extreme example is the star network, with degrees summing to 1− α:
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Asymmetric Networks Are Fragile (continued)

In fact, it can be shown that the highest level of aggregate volatility is
generated by the star network and is equal to

σGDP =
σ√

1−
(
n−1
n

)
α (1− α)

,

which is much greater than σ/
√
n when n is large.

In fact, this is not just high volatility, but systemic volatility (≈
“system-wide” volatility: shocks to the central sector spread to the rest,
creating system-wide co-movement—we return to systemic volatility below.
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What Does the US Input-Output Network Look Like?

Intersectoral network corresponding to the US input-output matrix in 1997. For

every input transaction above 5% of the total input purchases of the destination

sector, a link between two vertices is drawn.
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More Asymptotic Results

To obtain sharper theoretical results, consider a sequence of economies with
input-output matrix An and n→ ∞.

So we will be looking at “law of large numbers”-type results.

Suppose that σi ∈ (σ, σ).

Then the greatest degree of “stability” or “robustness” (least systemic risk)
corresponds to

σGDP ∼ 1/
√
n

(as in standard law of large numbers for independent variables).

Define the coefficient of variation of degrees (of an economy with n
sectors) as

CVn ≡
1

davg

[
1

n− 1

n

∑
i=1

(di − davg)

]1/2

,

where davg = 1
n ∑i di is the average degree.

14.582 (Week 9) Aggregate Fluctuations Fall 2017 23 / 45



First-Order Results

Just considering the first-order downstream impacts,

σGDP = Ω
(

1√
n
+

CVn√
n

)
.

The Ω notation implies σGDP → 0 as n→ 0 no faster than 1+CVn√
n

.

For regular networks, CVn = 0, so σGDP → 0 could (should) go to zero at
the rate 1√

n
.

For the star network, CVn 6→ 0 as n→ 0, so σGDP 6→ 0 and the law of large
numbers fails.

cn = Ω(bn)⇐⇒ lim infn→∞ cn/bn > 0

CVn = 0 CVn = 0 CVn ∼
√
n
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First-Order Results (continued)

We can also make these results easier to apply.

We say that the degree distribution for a sequence of economies has power
law tail if, there exists β > 1 such that for each n and for large k,

Pn (k) ∝ k−β,

where Pn (k) is the counter-cumulative distribution of degrees and β is the
shape parameter.

It can be shown that if a sequence of economies has power law tail with
shape parameter β ∈ (1, 2), then

σGDP = Ω
(
n
− β−1

β −ε
)

where ε > 0 is arbitrary.

A smaller β corresponds to a “thicker” tail and thus higher coefficient of
variation, and greater fragility.
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Higher-Order Results

In the same way that first-order downstream effects do not capture the full
implications of negative shocks to a sector, the degree distribution does not
capture the full extent of asymmetry/inequality of “connections”.

Two economies with the same degree distribution can have very different
structures of connections and very different nature of volatility:

2 3 d1 2 3 d

1
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Higher-Order Results (continued)

We define the second-order interconnectivity coefficient as

τ2(An) ≡
n

∑
i=1

∑
j 6=i

∑
k 6=i ,j

ajiakidjdk .

This will be higher when high degree sectors share “upstream parents”:

dH dL dH dL

low τ2

dH dH dL dL

high τ2
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Higher-Order Results (continued)

It can be shown that

σGDP = Ω

(
1√
n
+

CVn√
n
+

√
τ2(An)

n

)
.

2 3 d1

τ2 = 0

2 3 d

1

τ2 ∼ n2
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Higher-Order Results (continued)

Define second-order degree as

qi ≡
n

∑
j=1

djaji .

For a sequence of economies with a power law tail for the second-order
degree with shape parameter ζ ∈ (1, 2), we have

σGDP = Ω
(
n
− ζ−1

ζ −ε
)

,

for any ε > 0.

If both first and second-order degrees have power laws, then

σGDP = Ω
(
n
− ζ−1

ζ −ε
+ n
− β−1

β

)
,

i.e., dominant term: min {β, ζ}.
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3. Micro to Macro Accounting
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Di Giovanni, Levchenko, and Mejean (2014)

Question: What is the role of individual firms in generating aggregate
fluctuations of French sales growth over 1990–2007?
Strategy:

1 Decompose a firm’s annual sales growth into: i) Firm and firm-destination
shock (“micro” ), ii) Sector-destination shocks (“macro”)

2 Use estimates to measure the contribution of the firm component to aggregate
fluctuations (measured by variance of aggregate sales growth)

3 Relate the contribution of the firm component to the firm size concentration
and the interconnection between firms
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Overview of Results

1 More than 90% of the variance in firm-level growth rates accounted by the
firm-destination component

2 Around 40% of aggregate growth rate accounted by by firm component, both
for the manufacturing sector and for the whole economy

3 Contribution of firm-component is larger for fluctuations in aggregate exports

4 The volatility of the firm-specific component is correlated with the
distribution of firm size and the magnitude of IO linkages
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Aggregate Growth

Total aggregate sales by all French firms:

Xt = ∑
f ,n

xfnt ,

where xfnt is firm f ’s sales to destination n at time t

Let γAt = lnXt − lnXt−1. Up to a first-order approximation:

γAt = ∑
f ,n

wfnt0
γfnt

where:

wfnt0
= share of firm f ’s sales in market n in aggregate sales in base period t0

γfnt = growth rate between t − 1 and t
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Firm-Level Growth

Decompose firm-level growth into:

γfnt = δjnt + εfnt

where:

δjnt = sector-destination-year specific shock (”macro”)
εfnt is a firm-destination-year specific shock (”micro”)

Previous decomposition can be motivated by a multi-sector heterogeneous
firms model in the spirit of Melitz (2003) and Eaton et al. (2011)

firm-level residuals then capture both productivity and demand shocks

This can be estimated, year-by-year and destination-by- destination, using
OLS with fixed effects to identify sector-destination shocks
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Variance Decomposition

The variance of aggregate growth is

σ2
At0

= var (∑
j ,n

wjnt0
δjnt )︸ ︷︷ ︸

Macro Volatility

+ var (∑
f ,n

wfnt0
εfnt )︸ ︷︷ ︸

Firm Volatility

+COVt

Goal of DLM is to study to what extent the “Firm” component ‘’explains”
aggregate fluctuations

Same strategy as in development accounting literature
Compute ratio between between firm component and variance of aggregate
growth. If large, then firm is important
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Data Description

Firm-level domestic and export sales data for the universe of French firms
over 1990-2007

Merge two large datasets:

Fiscal administration: firm tax forms from BRN and RSI (small firms). BRN
covers 1.6 million firms and 52 NAF sectors. Manufacturing has 209 thousand
firms and 22 NAF industries, representing 30% of total sales

Customs: firm-destination exports
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Firm-Level Accounting: Whole Economy
98.7% of the observed variance is explained by the firm-level component.
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Firm-Level Accounting: Manufacturing
98.2% of the observed variance is explained by the firm-level component.
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Aggregate Volatility Accounting
Contribution of firm-component is equivalent to the contribution of all sectoral and macro
shocks. Firm-component contribution is larger for exports
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Aggregate Volatility Accounting
Contribution of firm-component is increasing over time (because weights vary across base
periods), both for the manufacturing sector and for the whole economy
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What Determines the Firm-Component?

Recall the definition of the firm-specific volatility

σ2
Ft0

= var (∑
f ,n

wfnt0 εfnt )

= ∑
f ,n

w2
fnt0

var (εfnt )︸ ︷︷ ︸
GRAN

+ ∑
g 6=f ,m 6=n

∑
f ,n

wgmt0wfnt0cov (εgmt , εfnt )︸ ︷︷ ︸
LINK

With i.i.d shocks and symmetric firms, we would expect GRAN = LINK = 0

Which departure matters more in practice?
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Granularity and Linkages

LINK component explains the majority of total firm-level volatility

Still true at the sectoral level with some heterogeneity (larger role of GRAN in the
“Petroleum” sector)

Contribution of GRAN increases over time
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Granularity Across Sectors

At the sector level:

GRAN = ∑
j

GRAN j and GRAN j = ∑
(f ,n)∈j

w2
fnt−1var (εfnt ) = σ2HERF j

t−1

⇒ Sectors more concentrated should display more volatility

Correlation less than perfect because, in the data, small firms tend to be more volatile
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Linkages Across Sectors

At the sector level:

LINK =
J

∑
i=1

J

∑
j=1

LINK ij and LINK ij ≡ ∑
(f ,n)∈i

∑
(g ,m)∈j

wfnt−1wgmt−1cov (εfnt , εgmt )
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Concluding Remarks

Hulten’s Theorem ⇒ link between “micro” shocks & aggregate volatility

Sector/firm sales are sufficient statistic for effect of a sector/firm shock
Primitive assumptions about firm growth and network structure only matter
for aggregate volatility to the extent that they affect distribution of sales

Hulten’s Theorem ⇒ link between globalization & aggregate volatility:

If globalization makes the distribution of firm sales “fatter” because only the
largest firms export, then globalization should increase aggregate volatility
Di Giovanni and Levchenko (JPE, 2012) explore that idea using Melitz (2003)

One can go beyond Hulten’s Theorem by:

Relaxing efficiency (e.g. Baqaee 2016)
Focusing on other moments of the distribution (e.g. Acemoglu et al. 2017)
Studying second-order approximations (e.g. Baqaee and Farhi 2017)
Going full CGE (e.g. Costinot, Donaldson, Smith and Caliendo, Parro,
Rossi-Hansberg, Sarte 2017)
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