- 14.582: International Trade II - Lecture 16: Economic Geography (Empirics I) #### Plan for Today's Lecture - Stylized facts about agglomeration of economic activity: - Some pictures - A systematic approach to measuring agglomeration - 3 Why agglomeration? A first look, via the patterns of co-agglomeration #### Plan for Today's Lecture - Stylized facts about agglomeration of economic activity: - Some pictures - A systematic approach to measuring agglomeration - 3 Why agglomeration? A first look, via the patterns of co-agglomeration ### The Earth at Night ## The US at Night ## The US "at night" (1940) MAP OF THE UNITED STATES SHOWING POPULATION DISTRIBUTION IN 1940 ## More Sophisticated Use of Satellite Data: Burchfield et al (2006, QJE) For more examples of the use of such satellite ("remote sensing") data in economics, see Donaldson and Storeygard (JEP, 2016) ## More Sophisticated Use of Satellite Data: Burchfield et al (2006, QJE) Economic Geography (Empirics I) ## More Sophisticated Use of Satellite Data: Burchfield et al (2006, QJE) #### What about concentration of individual industries? - No shortage of examples/anecdotes... - Marshall's original examples (cutlery in Sheffield; jewelry in Birmingham) - Silicon Valley, (Route 128?) - Detroit - Vegas - Dalton, GA 1 dot = plant 250+ employees Figure 2: Location of Large Manufacturing Plants (1947) Piedmont Region Figure 3: Location of Large Manufacturing Plants (1999) Manufacturing Plants (1999) 1 dot = plant 250+ employees Figure 4: Location of Durum Wheat, Rice, Flue Tobacco, and Burley Tobacco 1 dot = 50,000 tons Figure 5: Location of Sugar Beet Plants and Sugar Beet Crops Figure 6: Location of Anheuser-Busch Breweries and Population (2000) #### Plan for Today's Lecture - Stylized facts about agglomeration of economic activity: - Some pictures - A systematic approach to measuring agglomeration - 3 Why agglomeration? A first look, via the patterns of co-agglomeration ### Ellison and Glaeser (JPE, 1997) - EG (1997) aims to go beyond the anecdotes and ask just how concentrated is economic activity within any given industry in the US? - Key point: What is the right null hypothesis? - If output, within an industry, is highly concentrated in a small number of plants, then that industry will look very concentrated spatially, simply by nature of the small number of plants. (Consider extreme case of one plant.) - EG develop an index of localization that considers as its null hypothesis the random location of plants within an industry. They call this a "dartboard approach". #### A Model to Motivate the EG Index Suppose industry has N units that choose where to locate (among M regions), sequentially. kth unit gets profits from location i of $$\log \pi_{ki} = \log \bar{\pi}_i + g(v_1, ..., v_{k-1}) + \varepsilon_{ki}$$ - Where: - $\bar{\pi}_i$ is systematic payoff from location i - ε_{ki} is idiosyncratic payoff - g(.) is a spillover term—effects of earlier firms' location choices v_k #### A Model to Motivate the EG Index • Suppose (for now) that $g(\cdot) = 0$. Let ε_{ki} be Gumbel-distributed so, conditional on realizations of $\bar{\pi}_1, ..., \bar{\pi}_M$, we have $$Prob(v_k = i|\bar{\pi}_1, ..., \bar{\pi}_M) = \frac{\bar{\pi}_i}{\sum_j \bar{\pi}_j}$$ - Then restrict $\bar{\pi}_i$ to be drawn from distribution with: - $E\left[\frac{\bar{\pi}_i}{\sum_j \bar{\pi}_j}\right] = x_i$, where x_i is location i's share of overall manuf. employment (though very similar results if x_i is instead just location's population) - $Var\left[\frac{\bar{\pi}_i}{\sum_j \bar{\pi}_j}\right] = \gamma^{NA} x_i (1-x_i)$, with $\gamma^{NA} \in [0,1]$. This means that γ^{NA} (NA stands for "natural advantages") governs importance of systematic component $\bar{\pi}_i$ relative to idiosyncratic one. #### A Model to Motivate the EG Index For the spillover term assume that $$g(.) = \sum_{l \neq k} e_{kl} (1 - u_{li})(-\infty)$$ - Where: - e_{kl} is a Bernoulli random variable equal to one with probability γ^S . Don't need to specify dependence, but assume that e_{kl} is symmetric and transitive. (This will then imply that the sequential entry equilibrium is also the rational expectations equilibrium for any entry order). - u_{li} is indicator variable equal to one if plant l is located in location i. So spillovers restricted to take place only within locations, and not at all across locations. (More on that below.) #### The EG Index - Proposition 1: - The following is an unbiased estimator for $\gamma \equiv \gamma^{NA} + \gamma^S \gamma^{NA} \gamma^S$: $$\gamma = \frac{G - (1 - \sum_{i} x_{i}^{2})H}{(1 - \sum_{i} x_{i}^{2})(1 - H)}$$ - Where: - $G \equiv \sum_i (s_i x_i)^2$, with $s_i \equiv \sum_k z_k u_{ki}$, where z_k is the employment (taken as exogenous) of plant k and u_{ki} is (again) the indicator for whether plant k locates in location i. - $H \equiv \sum_k z_k^2$ is the industry's (employment-based) Herfindahl over plants. - Note that γ can't separately identify the spillover (γ^S) and natural advantage (γ^{NA}) determinants of agglomeration. (But it would be worrying if it could!) # EG (1997): Results ("Slight concentration is remarkably widespread") Fig. 1.—Histogram of γ (four-digit industries) #### EG (1997): Results - For industries that we might expect to be highly concentrated: - Autos: $\gamma = 0.127$ - Auto parts: $\gamma = 0.089$ - Carpets (i.e. Dalton, GA): $\gamma = 0.378$ - Electronics (i.e. Silicon Valley): $\gamma = 0.059 0.142$ - For industries that we might expect to not be highly concentrated: - Bottled/canned soft drinks: $\gamma = 0.005$ - Newspaper: $\gamma = 0.002$ - Concrete: $\gamma = 0.012$ - Ice: $\gamma = 0.012$ ## EG (1997): Results $\begin{tabular}{ll} TABLE~4\\ Most~and~Least~Localized~Industries\\ \end{tabular}$ | Four-Digit Industry | H | G | γ | |--|---------------------------------|---------|----------| | | 15 Most Localized
Industries | | | | 2371 Fur goods | .007 | .60 | .63 | | 2084 Wines, brandy, brandy spirits | .041 | .48 | .48 | | 2252 Hosiery not elsewhere classified | .008 | | .44 | | 3533 Oil and gas field machinery | .015 | .42 | .43 | | 2251 Women's hosiery | .028 | .40 | .40 | | 2273 Carpets and rugs | .013 | .37 | .38 | | 2429 Special product sawmills not elsewhere classified | .009 | .36 | .37 | | 3961 Costume jewelry | .017 | .32 | .32 | | 2895 Carbon black | .054 | .32 | .30 | | 3915 Jewelers' materials, lapidary | .025 | | .30 | | 2874 Phosphatic fertilizers | .066 | .32 | .29 | | 2061 Raw cane sugar | .038 | | .29 | | 2281 Yarn mills, except wool | .005 | | .28 | | 2034 Dehydrated fruits, vegetables, soups | .030 | | .28 | | 3761 Guided missiles, space vehicles | .046 | .27 | .25 | | | 15 I | east Lo | ocalized | | | Industries | | | | 3021 Rubber and plastics footwear | .06 | .05 | 013 | | 2032 Canned specialties | .03 | .02 | 012 | | 2082 Malt beverages | .04 | .03 | 010 | | 3635 Household vacuum cleaners | .18 | .17 | 009 | | 3652 Prerecorded records and tapes | .04 | .03 | 008 | | 3482 Small-arms ammunition | .18 | .17 | 004 | | 3324 Steel investment foundries | .04 | .04 | 009 | | 3534 Elevators and moving stairways | .03 | .03 | 001 | | 2052 Cookies and crackers | .03 | .03 | 000 | | 2098 Macaroni and spaghetti | .03 | .03 | 000 | | 3262 Vitreous china table, kitchenware | .13 | .12 | 000 | | 2035 Pickles, sauces, salad dressings | .01 | .01 | 000 | | 3821 Laboratory apparatus and furniture | .02 | .02 | 000 | | 2062 Cane sugar refining | .11 | .10 | .000 | | 3433 Heating equipment except electric | .01 | .01 | .000 | #### Duranton and Overman (REStud, 2005) - DO point out a few problems with the EG index: - What if spillovers are truly smooth over space (as seems natural) rather than discrete at location borders? Then measurement error caused by discrete location borders will cause downward bias in concentration measures. (Special case of what geographers call the "modifiable unit area problem".) - When to think of statistical significance of finding that an industry is "concentrated"? ### Duranton and Overman (2005) (Effectively) point-like location data from the $\ensuremath{\mathsf{UK}}$ #### EG (1997): By spatial unit Lower values for county-level spatial unit may be consistent with DO's first point. #### The DO Index DO propose the following index (for the employment-weighted concentration of any given industry, at distance band "d"): $$K^{emp}(d) = \frac{1}{h \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} e(i)e(j)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} e(i)e(j)f\left(\frac{d-d_{ij}}{h}\right)$$ - Where: - d_{ij} is the distance between plant i and plant j - $f(\cdot)$ is a (Gaussian) kernel function (and h some bandwidth) to smooth out for measurement error in distances - Hypothesis testing done via simulation (counterfactual distributions obtained from drawing plants with replacement from set of active locations) ### DO Index: function of distance (for 4 sample industries) Global confidence bands are a Bonferroni-like correction over all distances K-density, local confidence intervals and global confidence bands for four illustrative industries #### Plan for Today's Lecture - Stylized facts about agglomeration of economic activity: - Some pictures - 2 A systematic approach to measuring agglomeration - Why agglomeration? A first look, via the patterns of co-agglomeration #### What Causes Agglomeration? - Marshall postulated three different "transport" costs: - Goods: Firms (with indivisible production processes) will locate near suppliers and customers to avoid shipping costs - 2 People: Benefits of thick labor markets ("labor pooling") - 3 *Ideas:* Knowledge spillovers that decay with distance ("Mysteries of the trade become no mystery, but are, as it were, in the air.") - Ellison, Glaeser and Kerr (AER, 2010) seek to ask how well these explanations do, using evidence from industry "co-agglomeration" (as was actually defined in original EG 1997 paper) #### Back to EG Index: Co-agglomeration - Now suppose that: - $corr(u_{km}, u_{lm}) = \gamma_j$ if plants k and l both belong to industry j and locate in location m, where γ_j is the same γ as above (in the single-industry case) but the value of γ for industry j. - $corr(u_{km}, u_{lm}) = \gamma_{ij}$ if instead plant k is in industry i and plant l is in industry j. - So γ_{ij} measures tendency for industries i and j to co-agglomerate. - ullet Then Proposition 2: An unbiased estimator of γ_{ij} is given by $$\gamma_{ij}^{C} \equiv \frac{\sum_{m} (s_{mi} - x_{m})(s_{mj} - x_{m})}{1 - \sum_{m} x_{m}^{2}}$$ #### EGK (2010): Co-agglomeration Index TABLE 1—DESCRIPTIVE STATISTICS FOR PAIRWISE COAGGLOMERATION REGRESSIONS | | Mean | SD | Minimum | Maximum | | |--|----------|--------|-------------------------------|---------|--| | Panel A. Pairwise EG coagglomeration measures | | | | | | | EG state total employment coagglomeration | 0.000 | 0.013 | -0.065 | 0.207 | | | EG PMSA total employment coagglomeration | 0.000 | 0.006 | -0.025 | 0.119 | | | EG county total employment coagglomeration | 0.000 | 0.003 | -0.018 | 0.080 | | | EG state firm birth employment coagglomeration | 0.000 | 0.015 | -0.082 | 0.259 | | | EG expected coagglomeration due to natural advantages | 0.000 | 0.001 | -0.008 | 0.022 | | | | Industry | Releva | Relevant industries (nonzero) | | | | | count | Mean | SD | Maximum | | | Panel B. Pairwise DO coagglomeration measures | | | | | | | DO global localization coagglomeration, 1,000 mi. | 7,371 | 0.133 | 0.073 | 0.454 | | | DO global dispersion coagglomeration, 1,000 mi. | 10 | 0.592 | 0.078 | 0.746 | | | DO expected global localization coagglomeration, 1,000 mi. | 7,381 | 0.181 | 0.027 | 0.256 | | | DO global localization coagglomeration, 250 mi. | 6,429 | 0.017 | 0.019 | 0.283 | | | DO global dispersion coagglomeration, 250 mi. | 952 | 0.042 | 0.029 | 0.307 | | | DO expected global localization coagglomeration, 250 mi. | 7,381 | 0.029 | 0.010 | 0.077 | | ### EGK (2010): Co-agglomeration Index TABLE 2—HIGHEST PAIRWISE COAGGLOMERATIONS | Rank | Industry 1 | Industry 2 | Coagglomeration | | | | | | |-------|--|--|-----------------|--|--|--|--|--| | Panel | Panel A. EG index using 1987 state total employments | | | | | | | | | 1 | Broadwoven mills, cotton (221) | Yarn and thread mills (228) | 0.207 | | | | | | | 2 | Knitting mills (225) | Yarn and thread mills (228) | 0.187 | | | | | | | 3 | Broadwoven mills, fiber (222) | Textile finishing (226) | 0.178 | | | | | | | 4 | Broadwoven mills, cotton (221) | Broadwoven mills, fiber (222) | 0.171 | | | | | | | 5 | Broadwoven mills, fiber (222) | Yarn and thread mills (228) | 0.164 | | | | | | | 6 | Handbags (317) | Photographic equipment (386) | 0.155 | | | | | | | 7 | Broadwoven mills, wool (223) | Carpets and rugs (227) | 0.149 | | | | | | | 8 | Carpets and rugs (227) | Yarn and thread mills (228) | 0.142 | | | | | | | 9 | Photographic equipment (386) | Jewelry, silverware, plated ware (391) | 0.139 | | | | | | | 10 | Textile finishing (226) | Yarn and thread mills (228) | 0.138 | | | | | | | 11 | Broadwoven mills, cotton (221) | Textile finishing (226) | 0.137 | | | | | | | 12 | Broadwoven mills, cotton (221) | Carpets and rugs (227) | 0.137 | | | | | | | 13 | Broadwoven mills, cotton (221) | Knitting mills (225) | 0.136 | | | | | | | 14 | Carpets and rugs (227) | Pulp mills (261) | 0.110 | | | | | | | 15 | Jewelry, silverware, plated ware (391) | Costume jewelry and notions (396) | 0.107 | | | | | | #### Ellison, Glaeser and Kerr (2010) - Empirical proxies for 3 agglomeration mechanisms: - Goods: from IO tables, max of input share or output share over the two industries in both directions - People: Let Share_{io} be the share of industry i's employees in occupation o, then compute corr(Share_{io}, Share_{jo}). - Ideas: analogous to goods flows, but using patent citations (and Scherer (1984) "technology matrix" of R&D application relations) - Also control for a measure of similarity in natural advantage—building on Ellison and Glaeser (AEA P&P, 1999) who used 16 locational characteristics multiplied by cost advantage of each - \bullet Then simply regress $\gamma^{\textit{C}}_{ij}$ on these 4 variables (each standardized) #### Ellison, Glaeser and Kerr (2010): OLS Results TABLE 4—OLS MULTIVARIATE SPECIFICATIONS FOR PAIRWISE COAGGLOMERATION | | EG coaggl. index with state total emp. | | | | DO coaggl. index, 250 mi. | | | | |-------------------------------------|--|----------------------------------|-------------------------------|----------------------------------|---------------------------|----------------------------------|-------------------------------|----------------------------------| | | Base estimation | Exclude
natural
advantages | Separate
input &
output | Exclude
pairs in
same SIC2 | Base estimation | Exclude
natural
advantages | Separate
input &
output | Exclude
pairs in
same SIC2 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | | Natural advantages
[DV specific] | 0.163
(0.017) | | 0.162
(0.017) | 0.172
(0.016) | 0.251
(0.012) | | 0.252
(0.012) | 0.253
(0.013) | | Labor correlation | 0.118
(0.011) | 0.146
(0.012) | 0.114
(0.011) | 0.085
(0.012) | 0.069
(0.012) | 0.098
(0.013) | 0.066
(0.012) | 0.029
(0.012) | | Input-output | 0.146
(0.032) | 0.149
(0.032) | | 0.110
(0.022) | 0.162
(0.035) | 0.150
(0.035) | | 0.177
(0.032) | | Input | | | 0.106
(0.029) | | | | 0.097
(0.029) | | | Output | | | 0.093
(0.039) | | | | 0.107
(0.038) | | | Technology flows
Scherer R&D | 0.096
(0.035) | 0.112
(0.035) | $0.079 \\ (0.035)$ | 0.046
(0.019) | 0.076 (0.033) | 0.075
(0.034) | $0.065 \\ (0.032)$ | 0.033
(0.020) | | R ²
Observations | 0.103
7,381 | 0.077
7,381 | 0.110
7,381 | 0.059
7,000 | 0.113
7,381 | 0.051
7,381 | 0.117
7,381 | 0.102
7,000 | *Notes:* See Table 3. Regressions of pairwise coagglomeration on determinants of industrial co-location. Columns 4 and 8 exclude SIC3 pairwise combinations within the same SIC2. Online Appendix Table 6 provides additional robustness checks. Variables are transformed to have unit standard deviation for interpretation. Bootstrapped standard errors are reported in parentheses. #### IV Approach - Concern that the empirical proxies for agglomeration forces are themselves driven by agglomeration - E.g. is fact that shoe industry uses leather a purely technological feature, or partly the result of some other feature that caused shoes and leather to co-locate? - Two IVs proposed: - Measure the characteristics in the UK and IV with that. (Fine if random factors caused the unobserved reasons for coagglomeration in the US and the UK got different draws for those factors.) - Find regions of the US where, say, industry j is located but i is not and (using Census microdata) measure the characteristics on that subset of plants - NB: neither IV can be constructed for the knowledge spillovers variable so EGK just drop this regressor in the IV regressions #### Ellison, Glaeser and Kerr (2010): IV Results TABLE 5—IV MULTIVARIATE SPECIFICATIONS FOR PAIRWISE COAGGLOMERATION | | EG coaggl. | index with sta | ite total emp. | DO coaggl. index, 250 mi. | | | | |----------------------------------|------------|----------------|----------------|---------------------------|---------|------------|--| | | Base | UK | US spatial | Base | UK | US spatial | | | | OLS | IV | IV | OLS | IV | IV | | | | (1) | (2) | (3) | (4) | (5) | (6) | | | Natural advantages [DV specific] | 0.173 | 0.173 | 0.171 | 0.254 | 0.210 | 0.233 | | | | (0.016) | (0.019) | (0.016) | (0.013) | (0.016) | (0.012) | | | Labor correlation | 0.083 | 0.079 | 0.091 | 0.027 | 0.501 | 0.248 | | | | (0.012) | (0.060) | (0.023) | (0.012) | (0.060) | (0.023) | | | Input-output | 0.122 | 0.191 | 0.185 | 0.186 | 0.164 | 0.213 | | | | (0.023) | (0.048) | (0.036) | (0.031) | (0.054) | (0.049) | | | Observations | 7,000 | 7,000 | 7,000 | 7,000 | 7,000 | 7,000 | | *Notes:* See Table 3. OLS and IV regressions of pairwise coagglomeration on determinants of industrial co-location. All estimations exclude SIC3 pairwise combinations within the same SIC2. Online Appendix Tables 7 and 8 report first stages and additional robustness checks. Variables are transformed to have unit standard deviation for interpretation. Bootstrapped standard errors are reported in parentheses. #### Further Reading on Agglomeration Stylized Facts - Other chapters in 2004 Handbook of Urban Econ and Regional Science: - Kim and Margo on historical facts from US - Chapters on European and Asian analogs of the Holmes and Stevens chapter - City size distribution literature (e.g. Gabaix and Ioannides (2004) for survey) - Dynamics of city sizes and specializations: Duranton (AER, 2007)