The Elusive Pro-Competitive Effects of Trade

Costas Arkolakis (Yale) Arnaud Costinot (MIT)
Dave Donaldson (MIT) Andrés Rodríguez-Clare (UC Berkeley)

April 4, 2018
How Large Are the Gains from Trade Liberalization?

- Arkolakis, Costinot, and Rodriguez-Clare (2012), have shown that for fairly large class of trade models, welfare changes caused by trade shocks only depend on two statistics:

 1. Share of expenditure on domestic goods, λ
 2. Trade elasticity, ε, in gravity equation

- Assume small trade shock so that, $d \ln \lambda < 0$: associated welfare gain is given by

 $d \ln W = - \frac{d \ln \lambda}{\varepsilon}$
What About the Pro-Competitive Effects of Trade?

- Important qualification of ACR’s results:
 - All models considered in ACR feature CES utility functions
 - Thus firm-level markups are constant under monopolistic competition
 - This de facto rules out “pro-competitive” effects of trade
This Paper

- **Goal:** Study the pro-competitive effects of trade, or lack thereof
 - Depart from CES demand and constant markups.
 - Consider demands with variable elasticity and variable markups.

- **Focus:** Monopolistic competition models with firm-heterogeneity

- **Experiment:**
This Paper

• **Goal:** Study the pro-competitive effects of trade, or lack thereof
 - Depart from CES demand and constant markups.
 - Consider demands with variable elasticity and variable markups

• **Focus:** Monopolistic competition models with firm-heterogeneity

• **Experiment:**
 - Consider two classes of models with CES and without
 - Impose restrictions so that all these models have same macro predictions
 - What are the welfare gains under these two scenarios?
This Paper: Main Results

- Characterize welfare gains in this environment
 - Suppose small trade shock, $d \ln \tau$, raises trade openness, $d \ln \lambda < 0$
 - Welfare effect is given by
 $$d \ln W = -(1 - \eta) \frac{d \ln \lambda}{\varepsilon}$$

- $\eta \equiv$ structural parameter depends on
 - Degree of pass-through
 - Magnitude of GE effects
• Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η
Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η

What is the sign of η in theory?

Empirical literature points to incomplete pass-through

Demand parameter determines size of GE effects - non-parametric estimation
• Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η

• **What is the sign of η in theory?**
 • Under common alternatives to CES: $\eta \geq 0$
• Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η

• **What is the sign of η in theory?**

 • Under common alternatives to CES: $\eta \geq 0$

 • *Intuition:*

 Incomplete pass-through (Direct effect of changes in trade costs)
 GE effects (Direct effect of changes in trade costs dominates)
Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η

What is the sign of η in theory?
- Under common alternatives to CES: $\eta \geq 0$
- **Intuition:**
 - Incomplete pass-through (Direct effect of changes in trade costs)
 - GE effects (Direct effect of changes in trade costs dominates)

What is the sign of η in the data?
This Paper: Main Results (cont)

- Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η

- **What is the sign of η in theory?**
 - Under common alternatives to CES: $\eta \geq 0$
 - *Intuition:*
 - Incomplete pass-through (Direct effect of changes in trade costs)
 - GE effects (Direct effect of changes in trade costs dominates)

- **What is the sign of η in the data?**
 - Empirical literature points to incomplete pass-through
This Paper: Main Results (cont)

- Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η

- **What is the sign of η in theory?**
 - Under common alternatives to CES: $\eta \geq 0$
 - *Intuition:*
 - Incomplete pass-through (Direct effect of changes in trade costs)
 - GE effects (Direct effect of changes in trade costs dominates)

- **What is the sign of η in the data?**
 - Empirical literature points to incomplete pass-through
 - Demand parameter determines size of GE effects - non-parametric estimation
Related Literature

- Arkolakis Costinot Rodriguez-Clare ’12 (ACR)
 - Characterize gains from trade with variable markups

- Large theoretical literature on markups and trade (e.g. Krugman ’79, Feenstra ’03, Melitz Ottaviano ’07, Neary and Mrazova)
 - Consider a unified framework characterize gains from trade

- Large empirical literature on markups and trade (e.g. Levinsohn ’93, Krishna Mitra ’98, Loecker Warzynski ’12, Loecker et al ’12)
 - Consistent with Loecker at al ’12: liberalization leads to MC declines but markup increases

- Feenstra Weinstein ’10, Edmond Midrigan Xu ’12 using Atkeson Burstein
Roadmap

1. Basic Environment

2. Trade Equilibrium

3. Welfare Analysis

4. Empirical Estimates
1. Basic Environment
Basic Environment

- World economy comprising $i = 1, ..., n$ countries, denote i the exporter, j the importer

- **Representative Consumers**
 - Continuum of differentiated goods $\omega \in \Omega$, variable elasticity demand
 - One factor of production, labor, immobile across countries
 - $L_i \equiv$ labor endowment, $w_i \equiv$ wage in country i

- **Firms**
 - Each firm can produce a single product under monopolistic competition
 - N_i is the measure of goods that can be produced in i
 - Free entry: potential entrants need to hire F_i^e units of labor
Consumers

- All consumers have same preferences. Marshallian demand for good ω of consumer with income w facing prices $p \equiv \{p_\omega\}_{\omega \in \Omega}$ is given by

$$q_\omega(p, w) = Q(p, w) \frac{D(p_\omega/P(p, w))}{P(p, w)}$$

- $Q(p, w)$ and $P(p, w)$ are aggregators of all prices and the wage s.t.

$$
\int_{\omega \in \Omega} [H(p_\omega/P)]^\beta [p_\omega QD(p_\omega/P)]^{1-\beta} d\omega = w^{1-\beta},
$$

$$Q^{1-\beta} \left[\int_{\omega \in \Omega} p_\omega QD(p_\omega/P) d\omega \right]^\beta = w^\beta,$$

with $\beta \in \{0, 1\}$ and $H(\cdot)$ strictly increasing and strictly concave.
Examples

- All consumers have same preferences. Marshallian demand for good ω of consumer with income w facing prices $p \equiv \{p_\omega\}_{\omega \in \Omega}$ is given by

$$q_\omega(p, w) = Q(p, w)D(p_\omega/P(p, w))$$

Covers demands suggested by
- Krugman (1979): Symmetric Additively Separable Utility Functions
- Feenstra (2014): QMOR Expenditure Functions (Homoth.)
- Klenow and Willis (2016): Kimball Preferences (Homoth.)
Example I

- All consumers have same preferences. Marshallian demand for good ω of consumer with income w facing prices $p \equiv \{p_{\omega}\}_{\omega \in \Omega}$ is given by

$$q_{\omega}(p, w) = Q(p, w) D(p_{\omega}/P(p, w))$$

Example I:

- Symmetric Additively Separable Utility, $U = \int u(q_{\omega}) \, d\omega$, as in Krugman ’79
 - $\beta = 0$, $D = u'^{-1}$, $P = 1/\lambda$ ($\lambda \equiv$ Lagrange mult.)
 - see also Behrens et al ’09, ’11, Zhelobodko et al. ’11
Example II

- All consumers have same preferences. Marshallian demand for good ω of consumer with income w facing prices $\mathbf{p} \equiv \{p_\omega\}_{\omega \in \Omega}$ is given by

$$q_\omega(\mathbf{p}, w) = Q(\mathbf{p}, w) D\left(p_\omega / P(\mathbf{p}, w)\right)$$

Example II:

- Kimball preferences. Utility Q is implicitly given by $\int Y\left(\frac{q_\omega}{Q}\right) d\omega = 1$
- Manipulating the first-order conditions of this problem we get

$$q_\omega = QY'^{-1} \left(\frac{\lambda \int q_\omega Y' \left(\frac{q_\omega}{Q}\right) d\omega}{Q} p_\omega\right)$$

for all ω.

- $\beta = 1$, $D \equiv Y'^{-1}$, $P \equiv Q / \left(\lambda \int q_\omega Y' \left(\frac{q_\omega}{Q}\right) d\omega\right)$, and $H \equiv Y(D)$,
Additional Restrictions on the Demand System

- All consumers have same preferences. Marshallian demand for good ω of consumer with income w facing prices $p \equiv \{p_\omega\}_{\omega \in \Omega}$ is given by

$$ q_\omega(p, w) = Q(p, w) D(p_\omega / P(p, w)) $$

- **[Choke Price]:** There exists $a \in \mathbb{R}$ such that for all $x \geq a$, $D(x) = 0$.

- **Comments:**
 - CES can have welfare gains from new varieties but constant markup
 - Here variable markups but choke price guarantees that “cut-off” varieties have no welfare effect
 - Wlog we normalize $a = 1$ so that $P =$ choke price
Firms

- Monopolistic competition with free entry. N_i is measure of entrants in i

- Firms need to pay $w_i F_i^e$ to enter, production is subject to CRS
 - As in Melitz ’03, firm-level productivity z is realization of r.v. Z_i
 - Z_i is drawn independently across firms from a distribution G_i

- G_i is Pareto with same shape parameter around the world:

- **Pareto** For all $z \geq b_i$, $G_i(z) = 1 - (b_i / z)^\theta$, with $\theta > \beta - 1$
Firms

- Monopolistic competition with free entry. N_i is measure of entrants in i

- Firms need to pay $w_i F_i e$ to enter, production is subject to CRS
 - As in Melitz '03, firm-level productivity z is realization of r.v. Z_i
 - Z_i is drawn independently across firms from a distribution G_i

- G_i is Pareto with same shape parameter around the world:

- [Pareto] For all $z \geq b_i$, $G_i(z) = 1 - (b_i/z)^\theta$, with $\theta > \beta - 1$

- Pareto assumption is central to our experiment:
Firms

- Monopolistic competition with free entry. N_i is measure of entrants in i

- Firms need to pay $w_i F_i^e$ to enter, production is subject to CRS
 - As in Melitz ’03, firm-level productivity z is realization of r.v. Z_i
 - Z_i is drawn independently across firms from a distribution G_i

- G_i is Pareto with same shape parameter around the world:

 - **[Pareto]** For all $z \geq b_i$, $G_i(z) = 1 - (b_i/z)^\theta$, with $\theta > \beta - 1$

- Pareto assumption is central to our experiment:

 - In spite of differences in demand system, model considered in this paper will have same macro implications as model with CES in ACR
Trade Costs

• Trade is subject to iceberg trade costs $\tau_{ij} \geq 1$
 • Good markets are perfectly segmented across countries (Parallel trade is prohibited)

• There are no exporting fixed costs of selling to a market
 • Selection into markets driven entirely by choke price
2. Trade Equilibrium
Firm-Level Markups

- Firm optimization problem is given by

\[\pi (c, Q, P) = \max_p \{(p - c) q(p, Q, P)\} , \]

taking \(Q, P \) as given.

- \(c \equiv \frac{w_i}{z} \tau_{ij} \) denotes marginal cost of this firm (production + shipping)

- Monopoly pricing implies:

\[\frac{(p - c)}{p} = -1/\left(\frac{\partial \ln q(p, Q, P)}{\partial \ln p}\right) \]
Firm-Level Markups

- Firm optimization problem is given by
 \[\pi(c, Q, P) = \max_{p} \left\{ (p - c) q(p, Q, P) \right\}, \]
 taking \(Q, P \) as given.
 - \(c \equiv \frac{w_i}{z} \tau_{ij} \) denotes marginal cost of this firm (production + shipping)

- Monopoly pricing implies:
 \[\frac{(p - c)}{p} = -1 / \left(\frac{\partial \ln q(p, Q, P)}{\partial \ln p} \right) \]

- Define \(m \equiv p/c, \ v \equiv P/c \) & use demand system:
 \[m = \varepsilon_D(m/v) / (\varepsilon_D(m/v) - 1) \]
 where \(\varepsilon_D(x) \equiv -\frac{\partial \ln D(x)}{\partial \ln x} \) measures the elasticity of demand
Firm-Level Markups

- Given our demand system, firm-level markups satisfy

\[m = \varepsilon_D(m/v)/(\varepsilon_D(m/v) - 1) \]

- This implies that in any market:
 - Firm relative efficiency in a market, \(v \equiv P/c = P_jz/w_i\tau_{ij} \), is a sufficient statistic for firm-level markup, \(m \equiv \mu(v) \)
 - With a choke price the marginal firm (\(v = 1 \)) has no markup (\(m = 1 \))
 - More efficient firms charge higher markups, \(\mu'(v) > 0 \), if and only if demand functions are log-concave in log-prices, \(\varepsilon'_D > 0 \)
 - Mrazova and Neary (2013) provide further discussion
Firm-Level Decisions

- **Note:**
 - Pareto implies distribution of markups is unaffected by trade costs
 - In addition, extensive margin response here is irrelevant for welfare
 - Variable markups **do matter** for welfare, as we will see
Closing the Model

• Free entry condition \((\Pi_{ij} : \text{aggregate profits of firms from } i \text{ in } j)\):

\[
\sum_j \Pi_{ij} = N_i w_i F_i^e.
\]

• Labor market clearing condition \((X_{ij} : \text{bilateral trade})\):

\[
\sum_j X_{ij} = w_i L_i
\]

• Given firm choices, conditions pin down measure of entrants, \(N_i\), wages, \(w_i\).
Closing the Model

• Free entry condition (Π_{ij}: aggregate profits of firms from i in j):
 \[\sum_j \Pi_{ij} = N_i w_i F_e^i. \]

• Labor market clearing condition (X_{ij}: bilateral trade):
 \[\sum_j X_{ij} = w_i L_i \]

• Given firm choices, conditions pin down measure of entrants, N_i, wages, w_i.

• Pareto guarantees Π_{ij} / X_{ij} is constant (key restriction in ACR).
 • In turn, N_i does not change with different trade costs
 • This also implies that same results hold if entry is fixed
Bilateral Trade Flows and Pareto

- Under Pareto one can check that trade flows satisfy gravity equation:

\[\lambda_{ij} \equiv \frac{X_{ij}}{\sum_l X_{lj}} = \frac{N_i b_i^{-\theta} (w_i \tau_{ij})^{-\theta}}{\sum_l N_i b_l^{-\theta} (w_l \tau_{lj})^{-\theta}} \]

- The exact same structural relationship holds in ACR
 - see also Krugman '80, EK '02, Anderson van Wincoop '03, EKK '11

- Gravity equation has strong implications for welfare analysis
 - Changes in trade, relative wages caused by a trade shock same as in ACR (once calibrated to match initial trade flows, \(X_{ij} \), and elasticity, \(\theta \))
3. Welfare Analysis
Welfare Analysis

- Consider a small trade shock from \(\tau \equiv \{ \tau_{ij} \} \) to \(\tau' \equiv \{ \tau_{ij} + d\tau_{ij} \} \)

- Let \(e_j \equiv e(p_j, u_j) \) denote expenditure function in country \(j \)
Welfare Analysis

- One can show that changes in (log-) expenditure are given by:

\[
d \ln e_j = \sum_i \lambda_{ij} d \ln (w_i \tau_{ij}) + (-\rho) \sum_i \lambda_{ij} d \ln (w_i \tau_{ij}) + \rho d \ln P_j
\]

where

\[
\rho \equiv \int_1^\infty \frac{d \ln \mu(v)}{d \ln v} \frac{\left(\frac{\mu(v)}{v}\right) D(\frac{\mu(v)}{v}) v^{-\theta-1}}{\int_1^\infty \frac{\left(\frac{\mu(v')}{v'}\right) D(\frac{\mu(v')}{v'}) (v')^{-\theta-1}}{d v'}}
\]

- Consider a “good” trade shock s.t. \(\sum_i \lambda_{ij} d \ln (w_i \tau_{ij}) < 0 \):
Welfare Analysis

- One can show that changes in (log-) expenditure are given by:

\[d \ln e_j = \sum_i \lambda_{ij} d \ln (w_i \tau_{ij}) + (-\rho) \sum_i \lambda_{ij} d \ln (w_i \tau_{ij}) + \rho d \ln P_j \]

where

\[\rho \equiv \int_1^\infty \frac{d \ln \mu(v)}{d \ln v} \frac{(\mu(v)/v) D(\mu(v)/v) v^{-\theta-1}}{\int_1^\infty (\mu(v)/v') D(\mu(v)/v') (v')^{-\theta-1}} dv'. \]

- Consider a “good” trade shock s.t. \(\sum_i \lambda_{ij} d \ln (w_i \tau_{ij}) < 0 \):
 - First term is what one would get if markups were constant
Welfare Analysis

• One can show that changes in (log-) expenditure are given by:

\[
d \ln e_j = \sum_i \lambda_{ij} d \ln (w_i \tau_{ij}) + (-\rho) \sum_i \lambda_{ij} d \ln (w_i \tau_{ij}) + \rho d \ln P_j
\]

where

\[
\rho \equiv \int_1^\infty \frac{d \ln \mu(v)}{d \ln v} \frac{(\mu(v)/v) D(\mu(v)/v) v^{-\theta-1}}{\int_1^\infty (\mu(v'/v') D(\mu(v'/v') v'') v''^{-\theta-1} dv'.}
\]

• Consider a “good” trade shock s.t. \(\sum_i \lambda_{ij} d \ln (w_i \tau_{ij}) < 0 \):

 • First term is what one would get if markups were constant
 • **Direct markup effect:** If \(\rho > 0 \) lower gains from trade liberalization (incomplete pass-through)
Welfare Analysis

• One can show that changes in (log-) expenditure are given by:

\[
d \ln e_j = \sum_i \lambda_{ij} d \ln (w_i \tau_{ij}) + (-\rho) \sum_i \lambda_{ij} d \ln (w_i \tau_{ij}) + \rho d \ln P_j
\]

Change in marginal costs
Direct markup effect
GE markup effect

where

\[
\rho \equiv \int_1^{\infty} \frac{d \ln \mu(v)}{d \ln v} \frac{(\mu(v)/v) D(\mu(v)/v) v^{-\theta-1}}{\int_1^{\infty} (\mu(v')/v') D(\mu(v')/v') (v')^{-\theta-1}} dv'.
\]

• Consider a “good” trade shock s.t. \(\sum_i \lambda_{ij} d \ln (w_i \tau_{ij}) < 0 \):
 • First term is what one would get if markups were constant
 • **Direct markup effect:** If \(\rho > 0 \) lower gains from trade liberalization (incomplete pass-through)
 • **GE markup effect:** If \(\rho > 0 \) tends to increase gains if good trade shocks lead to a lower \(P_j \); see Melitz and Ottaviano ’07
Welfare Analysis

- The rest of the analysis proceeds in two steps

- **Use labor market clearing condition**
 Relate change in choke price to overall magnitude of trade shock:

 \[d\ln P_j = \frac{\theta}{1 - \beta + \theta} \sum_i \lambda_{ij} d\ln (w_i \tau_{ij}) \]

- **Use gravity equation, as in ACR**
 Relate trade shock to change in share of expenditure on domestic goods, level of trade elasticity:

 \[\sum_i \lambda_{ij} d\ln (w_i \tau_{ij}) = \frac{d\ln \lambda_{jj} \theta}{\theta} \]

- Putting things together, we obtain our new welfare formula
A New Welfare Formula

- **Proposition:** Compensating variation associated with small trade cost:

\[d \ln W_j = - (1 - \eta) \frac{d \ln \lambda_{jj}}{\theta}, \text{ with } \eta \equiv \rho \left(\frac{1 - \beta}{1 - \beta + \theta} \right) \]
A New Welfare Formula

- **Proposition:** *Compensating variation associated with small trade cost:*

\[
d \ln W_j = -(1 - \eta) \frac{d \ln \lambda_{jj}}{\theta}, \text{ with } \eta \equiv \rho \left(\frac{1 - \beta}{1 - \beta + \theta} \right)
\]

- **What determines the extent of “pro-competitive effects?”**

A New Welfare Formula

• **Proposition:** *Compensating variation associated with small trade cost:*

\[
d \ln W_j = - (1 - \eta) \frac{d \ln \lambda_{jj}}{\theta}, \text{ with } \eta \equiv \rho \left(\frac{1 - \beta}{1 - \beta + \theta} \right)
\]

• **What determines the extent of “pro-competitive effects?”**

 • \(\rho \) determines the degree of pass-through. If \(\varepsilon'_D > 0 \), then \(\rho > 0 \)
A New Welfare Formula

• **Proposition:** *Compensating variation associated with small trade cost:*

\[d \ln W_j = -(1 - \eta) \frac{d \ln \lambda_{jj}}{\theta}, \text{ with } \eta \equiv \rho \left(\frac{1 - \beta}{1 - \beta + \theta} \right) \]

• **What determines the extent of “pro-competitive effects?”**
 - \(\rho \) determines the degree of pass-through. If \(\varepsilon'_D > 0 \), then \(\rho > 0 \)
 - \(\beta \) and \(\theta \) determine the GE effect.
A New Welfare Formula

- **Proposition:** *Compensating variation associated with small trade cost:*

\[d \ln W_j = - (1 - \eta) \frac{d \ln \lambda_{jj}}{\theta}, \text{ with } \eta \equiv \rho \left(\frac{1 - \beta}{1 - \beta + \theta} \right) \]
Proposition: **Compensating variation associated with small trade cost:**

\[
d\ln W_j = - (1 - \eta) \frac{d\ln \lambda^{jj}}{\theta}, \text{ with } \eta \equiv \rho \left(\frac{1 - \beta}{1 - \beta + \theta} \right)
\]

What is the sign of \(\eta \) under common alternatives to CES?

- Kimball preferences or QMOR expenditure functions correspond to \(\beta = 1 \) (same gains as in ACR). In this case, \(\eta = 0 \).
- Additively separable utility corresponds to \(\beta = 0, \rho \in (0, 1) \). In this case, \(\eta > 0 \). Thus, lower gains from trade liberalization
A New Welfare Formula

- **Proposition:** *Compensating variation associated with small trade cost:*

\[d \ln W_j = - (1 - \eta) \frac{d \ln \lambda_{jj}}{\theta}, \text{ with } \eta \equiv \rho \left(\frac{1 - \beta}{1 - \beta + \theta} \right) \]

- **What is the sign of** \(\eta \) **under common alternatives to CES?**
 - Kimball preferences or QMOR expenditure functions correspond to \(\beta = 1 \) (same gains as in ACR). In this case, \(\eta = 0 \).
A New Welfare Formula

• **Proposition:** *Compensating variation associated with small trade cost:*

\[d \ln W_j = - (1 - \eta) \frac{d \ln \lambda_{jj}}{\theta}, \text{with } \eta \equiv \rho \left(\frac{1 - \beta}{1 - \beta + \theta} \right) \]

• **What is the sign of** \(\eta \) **under common alternatives to CES?**

 • Kimball preferences or QMOR expenditure functions correspond to \(\beta = 1 \) (same gains as in ACR). In this case, \(\eta = 0 \)

 • Additively separable utility corresponds to \(\beta = 0, \rho \in (0, 1) \). In this case, \(\eta > 0 \). Thus, lower gains from trade liberalization
Intuition

- If all countries are symmetric, compensating variation can be written as

\[
d \ln W_j = - \sum_i \lambda_{ij} d \ln \tau_{ij} + \rho \sum_i \lambda_{ij} d \ln \tau_{ij} + \rho d \ln P_j
\]

Direct markup effect

GE markup effect

\[
= - \sum_i \lambda_{ij} d \ln \tau_{ij} + \text{cov} \left(\mu_{\omega,i}, \frac{dL_{\omega,i}}{L_j} \right)
\]

where \(\text{cov} \left(\mu_{\omega,i}, \frac{dL_{\omega,i}}{L_j} \right) = \sum_i \int_{\omega \in \Omega_{ji}} [\mu_{\omega,i} d \left(\frac{L_{\omega,i}}{L_j} \right)] d\omega \)
Intuition

• If all countries are symmetric, compensating variation can be written as

\[d \ln W_j = - \sum_i \lambda_{ij} d \ln \tau_{ij} + \rho \sum_i \lambda_{ij} d \ln \tau_{ij} + -\rho d \ln P_j \]

Direct markup effect

GE markup effect

\[= - \sum_i \lambda_{ij} d \ln \tau_{ij} + \text{cov} \left(\mu_{\omega,i}, \frac{dL_{\omega,i}}{L_j} \right) \]

where \(\text{cov} \left(\mu_{\omega,i}, \frac{dL_{\omega,i}}{L_j} \right) = \sum_i \int_{\omega \in \Omega_{ji}} [\mu_{\omega,i} d \left(L_{\omega,i} / L_j \right)] d\omega \)

• Covariance term only appears if markups are variable
Intuition

• If all countries are symmetric, compensating variation can be written as

\[d \ln W_j = - \sum_i \lambda_{ij} d \ln \tau_{ij} + \rho \sum_i \lambda_{ij} d \ln \tau_{ij} + -\rho d \ln P_j \]

Direct markup effect

GE markup effect

\[= - \sum_i \lambda_{ij} d \ln \tau_{ij} + \text{cov} \left(\mu_{\omega,i}, \frac{dL_{\omega,i}}{L_j} \right) \]

where \(\text{cov} \left(\mu_{\omega,i}, \frac{dL_{\omega,i}}{L_j} \right) = \sum_i \int_{\omega \in \Omega_j} \left[\mu_{\omega,i} d \left(L_{\omega,i} / L_j \right) \right] d\omega \)

• Covariance term only appears if markups are variable

• A new source of gains or losses depending on reallocation of labor and correlation with markups
4. Empirical Estimates
What is the value of η in the data?

- In the homothetic case ($\beta = 1$) we then have $\eta = 0$, and hence no pro-competitive effects, irrespective of other parameters.
- In the non-homothetic case ($\beta = 0$) the value of η depends on $1/(1 + \theta)$ and ρ.
 - θ is equal to the elasticity of aggregate trade flows with respect to trade costs. We use $\theta = 5$, in line with recent estimates of “trade elasticity.”
 - This implies that η lies between zero (for homothetic demand) and $\rho/6$ (for non-homothetic demand).
- If we want tighter bounds, we need to estimate ρ
Estimation of ρ: Approach I

• **Approach I** = Estimate $D(\cdot)$ directly and use estimate to evaluate ρ (under monopolistic competition)

• We focus on the case of additively separable preferences in the “Pollak family”. This corresponds to

\[
D(p_\omega / P) = (p_\omega / P)^{1/\gamma} - \alpha.
\]

• This nests the CES case (if $\alpha = 0$) but also allows for the possibility of either $\rho > 0$ (if $\alpha > 0$) or $\rho < 0$ (if $\alpha < 0$)

• We estimate the inverse demand relation given by

\[
\Delta_t \Delta_{gi} \ln p_{git}^k = \gamma \Delta_t \Delta_{gi} \ln (q_{git}^k + \alpha) + \Delta_t \Delta_{gi} \ln \epsilon_{git}^k,
\]

• Non-linear IV estimate is $\hat{\gamma} = -0.347 \ [\hat{\gamma} = -0.373, -0.312]$ and $\hat{\alpha} = 3.053 \ [0.633, 9.940]$. This leads to $\hat{\rho} = 0.36$ and $\hat{\eta} = \hat{\rho} / 6 = 0.06$ (using $\theta = 5$)
Estimate of ρ: Approach II

- **Approach II** = Use estimates of pass-through of costs into prices
- GKLP '12: cross-sectional regression of (log) prices on (log) mc yields 0.35
 - With $\rho = 0.65$ and $\theta = 5$, we now get $\eta = 0.11$
- Burstein and Gopinath (2014): time series evidence on long-run exchange rate pass-through between 0.14 and 0.51
 - This gives ρ between 0.49 and 0.86 and, in turn, η between 0.08 and 0.14
- **Conclusion**: small downward adjustment in gains from trade liberalization (though with homotheticity, gains could be the same)
 - Hence the title “The Elusive Pro-Competitive Effects of Trade”