The Elusive Pro-Competitive Effects of Trade

Costas Arkolakis (Yale) Arnaud Costinot (MIT) Dave Donaldson (MIT) Andrés Rodríguez-Clare (UC Berkeley)

April 4, 2018

How Large Are the Gains from Trade Liberalization?

- Arkolakis, Costinot, and Rodriguez-Clare (2012), have shown that for fairly large class of trade models, welfare changes caused by trade shocks only depend on two statistics:
 - 1. Share of expenditure on domestic goods, $\boldsymbol{\lambda}$
 - 2. Trade elasticity, ε , in gravity equation
- Assume small trade shock so that, $d \ln \lambda < 0$: associated welfare gain is given by

$$d\ln W = -rac{d\ln\lambda}{arepsilon}$$

What About the Pro-Competitive Effects of Trade?

- Important qualification of ACR's results:
 - All models considered in ACR feature CES utility functions
 - Thus firm-level markups are constant under monopolistic competition
 - This de facto rules out "pro-competitive" effects of trade

This Paper

- Goal: Study the pro-competitive effects of trade, or lack thereof
 - Depart from CES demand and constant markups.
 - Consider demands with variable elasticity and variable markups.
- Focus: Monopolistic competition models with firm-heterogeneity
- Experiment:

This Paper

- Goal: Study the pro-competitive effects of trade, or lack thereof
 - Depart from CES demand and constant markups.
 - Consider demands with variable elasticity and variable markups
- Focus: Monopolistic competition models with firm-heterogeneity
- Experiment:
 - Consider two classes of models with CES and without
 - Impose restrictions so that all these models have same macro predictions
 - What are the welfare gains under these two scenarios?

This Paper: Main Results

- · Characterize welfare gains in this environment
 - Suppose small trade shock, $d \ln \tau$, raises trade openess, $d \ln \lambda < 0$
 - Welfare effect is given by

$$d \ln W = -(1-\eta) \, \frac{d \ln \lambda}{\varepsilon}$$

- $\eta \equiv$ structural parameter depends on
 - Degree of pass-through
 - Magnitude of GE effects

- Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η

- Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η
- What is the sign of η in theory?

- Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η
- What is the sign of η in theory?
 - Under common alternatives to CES: $\eta \geq 0$

- Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η
- What is the sign of η in theory?
 - Under common alternatives to CES: $\eta \geq 0$
 - Intuition:

Incomplete pass-through (Direct effect of changes in trade costs) GE effects (Direct effect of changes in trade costs dominates)

- Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η
- What is the sign of η in theory?
 - Under common alternatives to CES: $\eta \geq 0$
 - Intuition:

Incomplete pass-through (Direct effect of changes in trade costs) GE effects (Direct effect of changes in trade costs dominates)

• What is the sign of η in the data?

- Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η
- What is the sign of η in theory?
 - Under common alternatives to CES: $\eta \geq 0$
 - Intuition:

Incomplete pass-through (Direct effect of changes in trade costs) GE effects (Direct effect of changes in trade costs dominates)

• What is the sign of η in the data?

• Empirical literature points to incomplete pass-through

- Whether models with variable markups lead to larger or lower gains from trade liberalization depends on sign of η
- What is the sign of η in theory?
 - Under common alternatives to CES: $\eta \geq 0$
 - Intuition:

Incomplete pass-through (Direct effect of changes in trade costs) GE effects (Direct effect of changes in trade costs dominates)

• What is the sign of η in the data?

- Empirical literature points to incomplete pass-through
- Demand parameter determines size of GE effects non-parametric estimation

Related Literature

- Arkolakis Costinot Rodriguez-Clare '12 (ACR)
 - Characterize gains from trade with variable markups
- Large theoretical literature on markups and trade (e.g. Krugman '79, Feenstra '03, Melitz Ottaviano '07, Neary and Mrazova)
 - Consider a unified framework characterize gains from trade
- Large empirical literature on markups and trade (e.g. Levinsohn '93, Krishna Mitra '98, Loecker Warzynski '12, Loecker et al '12)
 - Consistent with Loecker at al '12: liberalization leads to MC declines but markup increases
- Feenstra Weinstein '10, Edmond Midrigan Xu '12 using Atkeson Burstein

Roadmap

- 1. Basic Environment
- 2. Trade Equilibrium
- 3. Welfare Analysis
- 4. Empirical Estimates

1. Basic Environment

Basic Environment

• World economy comprising *i* = 1, ..., *n* countries, denote *i* the exporter, *j* the importer

• Representative Consumers

- Continuum of differentiated goods $\omega\in\Omega$, variable elasticity demand
- One factor of production, labor, immobile across countries

• $L_i \equiv$ labor endowment, $w_i \equiv$ wage in country *i*

• Firms

- Each firm can produce a single product under monopolistic competition
- N_i is the measure of goods that can be produced in i
 - Free entry: potential entrants need to hire F_i^e units of labor

Consumers

All consumers have same preferences. Marshallian demand for good ω of consumer with income w facing prices **p** ≡ {p_ω}_{ω∈Ω} is given by

$$q_{\omega}(\boldsymbol{p}, w) = Q(\boldsymbol{p}, w) D(p_{\omega}/P(\boldsymbol{p}, w))$$

• $Q(\mathbf{p}, w)$ and $P(\mathbf{p}, w)$ are aggregators of all prices and the wage s.t.

$$\int_{\omega \in \Omega} \left[H(p_{\omega}/P) \right]^{\beta} \left[p_{\omega} QD(p_{\omega}/P) \right]^{1-\beta} d\omega = w^{1-\beta}$$
$$Q^{1-\beta} \left[\int_{\omega \in \Omega} p_{\omega} QD(p_{\omega}/P) d\omega \right]^{\beta} = w^{\beta},$$

with $\beta \in \{\texttt{0},\texttt{1}\}$ and $H(\cdot)$ strictly increasing and strictly concave

Examples

All consumers have same preferences. Marshallian demand for good ω of consumer with income w facing prices p ≡ {p_ω}_{ω∈Ω} is given by

$$q_{\omega}(\boldsymbol{p}, w) = Q(\boldsymbol{p}, w) D(p_{\omega}/P(\boldsymbol{p}, w))$$

Covers demands suggested by

Krugman (1979): Symmetric Additively Separable Utility FunctionsFeenstra (2014): QMOR Expenditure Functions (Homoth.)Klenow and Willis (2016): Kimball Preferences (Homoth.)

Example I

All consumers have same preferences. Marshallian demand for good ω of consumer with income w facing prices p ≡ {p_ω}_{ω∈Ω} is given by

$$q_{\omega}(\boldsymbol{p}, w) = Q(\boldsymbol{p}, w) D(p_{\omega}/P(\boldsymbol{p}, w))$$

Example I:

- Symmetric Additively Separable Utility, $U = \int u(q_{\omega}) d\omega$, as in Krugman '79
 - $\beta = 0$, $D = u'^{-1}$, $P = 1/\lambda$ ($\lambda \equiv$ Lagrange mult.)
 - see also Behrens et al '09, '11, Zhelobodko et al. '11

Example II

All consumers have same preferences. Marshallian demand for good ω of consumer with income w facing prices **p** ≡ {p_ω}_{ω∈Ω} is given by

$$q_{\omega}(\boldsymbol{p}, w) = Q(\boldsymbol{p}, w) D(p_{\omega}/P(\boldsymbol{p}, w))$$

Example II:

- Kimball preferences. Utility Q is implicitly given by $\int Y\left(rac{q_\omega}{Q}\right) d\omega = 1$
- Manipulating the first-order conditions of this problem we get

$$q_{\omega} = QY'^{-1} \left(\frac{\lambda \int q_{\omega} Y'\left(\frac{q_{\omega}}{Q}\right) d\omega}{Q} p_{\omega} \right) \text{ for all } \omega.$$

•
$$\beta = 1$$
, $D \equiv Y'^{-1}$, $P \equiv Q / \left(\lambda \int q_{\omega} Y'\left(\frac{q_{\omega}}{Q}\right) d\omega\right)$, and $H \equiv Y(D)$,

Additional Restrictions on the Demand System

All consumers have same preferences. Marshallian demand for good ω of consumer with income w facing prices p ≡ {p_ω}_{ω∈Ω} is given by

$$q_{\omega}(\boldsymbol{p}, w) = Q(\boldsymbol{p}, w) D(p_{\omega}/P(\boldsymbol{p}, w))$$

- [Choke Price]: There exists $a \in \mathbb{R}$ such that for all $x \ge a$, D(x) = 0.
 - Comments:
 - CES can have welfare gains from new varieties but constant markup
 - Here variable markups but choke price guarantees that "cut-off" varieties have no welfare effect
 - Wlog we normalize a = 1 so that P = choke price

Firms

- Monopolistic competition with free entry. N_i is measure of entrants in i
- Firms need to pay $w_i F_i^e$ to enter, production is subject to CRS
 - As in Melitz '03, firm-level productivity z is realization of r.v. Z_i
 - Z_i is drawn independently across firms from a distribution G_i
- *G_i* is Pareto with same shape parameter around the world:
- [Pareto] For all $z \ge b_i$, $G_i(z) = 1 (b_i/z)^{\theta}$, with $\theta > \beta 1$

Firms

- Monopolistic competition with free entry. N_i is measure of entrants in i
- Firms need to pay $w_i F_i^e$ to enter, production is subject to CRS
 - As in Melitz '03, firm-level productivity z is realization of r.v. Z_i
 - Z_i is drawn independently across firms from a distribution G_i
- *G_i* is Pareto with same shape parameter around the world:
- [Pareto] For all $z \ge b_i$, $G_i(z) = 1 (b_i/z)^{\theta}$, with $\theta > \beta 1$
- Pareto assumption is central to our experiment:

Firms

- Monopolistic competition with free entry. N_i is measure of entrants in i
- Firms need to pay $w_i F_i^e$ to enter, production is subject to CRS
 - As in Melitz '03, firm-level productivity z is realization of r.v. Z_i
 - Z_i is drawn independently across firms from a distribution G_i
- *G_i* is Pareto with same shape parameter around the world:
- [Pareto] For all $z \ge b_i$, $G_i(z) = 1 (b_i/z)^{\theta}$, with $\theta > \beta 1$
- Pareto assumption is central to our experiment:
- In spite of differences in demand system, model considered in this paper will have same macro implications as model with CES in ACR

Trade Costs

- Trade is subject to iceberg trade costs $au_{ij} \geq 1$
 - Good markets are perfectly segmented across countries (Parallel trade is prohibited)
- There are no exporting fixed costs of selling to a market
 - Selection into markets driven entirely by choke price

2. Trade Equilibrium

Firm-Level Markups

• Firm optimization problem is given by

$$\pi(c, Q, P) = \max_{p} \left\{ (p-c) q(p, Q, P) \right\},\$$

taking Q, P as given.

- $c \equiv \frac{w_i}{z} \tau_{ij}$ denotes marginal cost of this firm (production + shipping)
- Monopoly pricing implies:

$$(p-c)/p = -1/(\partial \ln q(p, Q, P)/\partial \ln p)$$

Firm-Level Markups

• Firm optimization problem is given by

$$\pi(c, Q, P) = \max_{p} \left\{ (p-c) q(p, Q, P) \right\},$$

taking Q, P as given.

- $c \equiv \frac{w_i}{z} \tau_{ij}$ denotes marginal cost of this firm (production + shipping)
- Monopoly pricing implies:

$$(p-c)/p = -1/(\partial \ln q(p, Q, P)/\partial \ln p)$$

• Define $m \equiv p/c$, $v \equiv P/c$ & use demand system:

$$m = \varepsilon_D(m/v)/(\varepsilon_D(m/v) - 1)$$

where $\varepsilon_D(x) \equiv -\partial \ln D(x) / \partial \ln x$ measures the elasticity of demand

Firm-Level Markups

• Given our demand system, firm-level markups satisfy

$$m = \varepsilon_D(m/v)/(\varepsilon_D(m/v)-1)$$

- This implies that in any market:
 - Firm relative efficiency in a market, v ≡ P/c = P_jz/w_iτ_{ij}, is a sufficient statistic for firm-level markup, m ≡ μ(v)
 - With a choke price the marginal firm (v = 1) has no markup (m = 1)
 - More efficient firms charge higher markups, μ'(v) > 0, if and only if demand functions are log-concave in log-prices, ε'_D > 0
 - Mrazova and Neary (2013) provide further discussion

Firm-Level Decisions

• Note:

- Pareto implies distribution of markups is unaffected by trade costs
- In addition, extensive margin response here is irrelevant for welfare
- Variable markups do matter for welfare, as we will see

Closing the Model

• Free entry condition $(\Pi_{ij} : \text{aggregate profits of firms from } i \text{ in } j)$:

$$\sum_{j} \Pi_{ij} = N_i w_i F_i^e.$$

• Labor market clearing condition (X_{ij} : bilateral trade):

$$\sum_{j} X_{ij} = w_i L_i$$

 Given firm choices, conditions pin down measure of entrants, N_i, wages, w_i

Closing the Model

• Free entry condition $(\Pi_{ij} : \text{aggregate profits of firms from } i \text{ in } j)$:

$$\sum_{j} \Pi_{ij} = N_i w_i F_i^e.$$

• Labor market clearing condition (X_{ij} : bilateral trade):

$$\sum_{j} X_{ij} = w_i L_i$$

- Given firm choices, conditions pin down measure of entrants, N_i, wages, w_i
- Pareto guarantees Π_{ij}/X_{ij} is constant (key restriction in ACR).
 - In turn, N_i does not change with different trade costs
 - This also implies that same results hold if entry is fixed

Bilateral Trade Flows and Pareto

• Under Pareto one can check that trade flows satisfy gravity equation:

$$\lambda_{ij} \equiv \frac{X_{ij}}{\sum_{l} X_{lj}} = \frac{N_{i} b_{i}^{-\theta} (w_{i} \tau_{ij})^{-\theta}}{\sum_{l} N_{l} b_{l}^{-\theta} (w_{l} \tau_{lj})^{-\theta}}$$

- The exact same structural relationship holds in ACR
 - see also Krugman '80, EK '02, Anderson van Wincoop '03, EKK '11
- Gravity equation has strong implications for welfare analysis
 - Changes in trade, relative wages caused by a trade shock same as in ACR (once calibrated to match initial trade flows, X_{ij} , and elasticity, θ)

- Consider a small trade shock from $\tau \equiv {\tau_{ij}}$ to $\tau' \equiv {\tau_{ij} + d\tau_{ij}}$
- Let $e_j \equiv e(\mathbf{p}_j, u_j)$ denote expenditure function in country j

• One can show that changes in (log-) expenditure are given by:

$$d \ln e_j = \underbrace{\sum_i \lambda_{ij} d \ln(w_i \tau_{ij})}_{\text{Change in marginal costs}} + \underbrace{(-\rho) \sum_i \lambda_{ij} d \ln(w_i \tau_{ij})}_{\text{Direct markup effect}} + \underbrace{\rho d \ln P_j}_{\text{GE markup effect}}$$

where

$$\rho \equiv \int_{1}^{\infty} \frac{d \ln \mu (v)}{d \ln v} \frac{(\mu(v)/v) D(\mu(v)/v) v^{-\theta-1}}{\int_{1}^{\infty} (\mu(v')/v') D(\mu(v')/v') (v')^{-\theta-1} dv'} dv.$$

• Consider a "good" trade shock s.t. $\sum_i \lambda_{ij} d \ln(w_i \tau_{ij}) < 0$:

• One can show that changes in (log-) expenditure are given by:

$$d \ln e_j = \underbrace{\sum_i \lambda_{ij} d \ln(w_i \tau_{ij})}_{\text{Change in marginal costs}} + \underbrace{(-\rho) \sum_i \lambda_{ij} d \ln(w_i \tau_{ij})}_{\text{Direct markup effect}} + \underbrace{\rho d \ln P_j}_{\text{GE markup effect}}$$

where

$$\rho \equiv \int_{1}^{\infty} \frac{d \ln \mu (v)}{d \ln v} \frac{(\mu(v)/v) D(\mu(v)/v) v^{-\theta-1}}{\int_{1}^{\infty} (\mu(v')/v') D(\mu(v')/v') (v')^{-\theta-1} dv'} dv.$$

• Consider a "good" trade shock s.t. $\sum_i \lambda_{ij} d \ln(w_i \tau_{ij}) < 0$:

· First term is what one would get if markups were constant

• One can show that changes in (log-) expenditure are given by:

$$d \ln e_j = \underbrace{\sum_i \lambda_{ij} d \ln(w_i \tau_{ij})}_{\text{Change in marginal costs}} + \underbrace{(-\rho) \sum_i \lambda_{ij} d \ln(w_i \tau_{ij})}_{\text{Direct markup effect}} + \underbrace{\rho d \ln P_j}_{\text{GE markup effect}}$$

where

$$\rho \equiv \int_{1}^{\infty} \frac{d \ln \mu (v)}{d \ln v} \frac{(\mu(v)/v) D(\mu(v)/v) v^{-\theta-1}}{\int_{1}^{\infty} (\mu(v')/v') D(\mu(v')/v') (v')^{-\theta-1} dv'} dv.$$

• Consider a "good" trade shock s.t. $\sum_i \lambda_{ij} d \ln(w_i \tau_{ij}) < 0$:

- · First term is what one would get if markups were constant
- Direct markup effect: If $\rho > 0$ lower gains from trade liberalization (incomplete pass-through)

• One can show that changes in (log-) expenditure are given by:

$$d \ln e_j = \underbrace{\sum_i \lambda_{ij} d \ln(w_i \tau_{ij})}_{\text{Change in marginal costs}} + \underbrace{(-\rho) \sum_i \lambda_{ij} d \ln(w_i \tau_{ij})}_{\text{Direct markup effect}} + \underbrace{\rho d \ln P_j}_{\text{GE markup effect}}$$

where

$$\rho \equiv \int_{1}^{\infty} \frac{d \ln \mu (v)}{d \ln v} \frac{(\mu(v)/v) D(\mu(v)/v) v^{-\theta-1}}{\int_{1}^{\infty} (\mu(v')/v') D(\mu(v')/v') (v')^{-\theta-1} dv'} dv.$$

• Consider a "good" trade shock s.t. $\sum_i \lambda_{ij} d \ln(w_i \tau_{ij}) < 0$:

- · First term is what one would get if markups were constant
- Direct markup effect: If $\rho > 0$ lower gains from trade liberalization (incomplete pass-through)
- GE markup effect: If ρ > 0 tends to increase gains if good trade shocks lead to a lower P_j; see Melitz and Ottaviano '07

- The rest of the analysis proceeds in two steps
- Use labor market clearing condition Relate change in choke price to overall magnitude of trade shock:

$$d \ln P_j = rac{ heta}{1-eta+ heta} \sum_i \lambda_{ij} d \ln(w_i au_{ij})$$

• Use gravity equation, as in ACR Relate trade shock to change in share of expenditure on domestic goods, level of trade elasticity:

$$\sum_{i} \lambda_{ij} d \ln(w_i \tau_{ij}) = d \ln \lambda_{jj} / \theta$$

• Putting things together, we obtain our new welfare formula

$$d \ln W_j = -(1-\eta) \frac{d \ln \lambda_{jj}}{\theta}$$
, with $\eta \equiv \rho \left(\frac{1-\beta}{1-\beta+\theta} \right)$

• Proposition: Compensating variation associated with small trade cost:

$$d \ln W_j = -(1-\eta) \, rac{d \ln \lambda_{jj}}{ heta}$$
, with $\eta \equiv
ho \left(rac{1-eta}{1-eta+ heta}
ight)$

• What determines the extent of "pro-competitive effects?"

$$d \ln W_j = -(1-\eta) \, rac{d \ln \lambda_{jj}}{ heta}$$
, with $\eta \equiv
ho \left(rac{1-eta}{1-eta+ heta}
ight)$

- What determines the extent of "pro-competitive effects?"
 - ρ determines the degree of pass-through. If $\varepsilon'_D > 0$, then $\rho > 0$

$$d \ln W_j = -(1-\eta) \, rac{d \ln \lambda_{jj}}{ heta}$$
, with $\eta \equiv
ho \left(rac{1-eta}{1-eta+ heta}
ight)$

- What determines the extent of "pro-competitive effects?"
 - ρ determines the degree of pass-through. If $\varepsilon'_D > 0$, then $\rho > 0$
 - β and θ determine the GE effect.

$$d \ln W_j = -(1-\eta) \frac{d \ln \lambda_{jj}}{\theta}$$
, with $\eta \equiv \rho \left(\frac{1-\beta}{1-\beta+\theta} \right)$

• Proposition: Compensating variation associated with small trade cost:

$$d \ln W_j = -(1-\eta) \, rac{d \ln \lambda_{jj}}{ heta}$$
, with $\eta \equiv
ho \left(rac{1-eta}{1-eta+ heta}
ight)$

• What is the sign of η under common alternatives to CES?

$$d \ln W_j = -(1-\eta) \, rac{d \ln \lambda_{jj}}{ heta}$$
, with $\eta \equiv
ho \left(rac{1-eta}{1-eta+ heta}
ight)$

- What is the sign of η under common alternatives to CES?
 - Kimball preferences or QMOR expenditure functions correspond to $\beta = 1$ (same gains as in ACR). In this case, $\eta = 0$

$$d \ln W_j = -(1-\eta) \, rac{d \ln \lambda_{jj}}{ heta}$$
, with $\eta \equiv
ho \left(rac{1-eta}{1-eta+ heta}
ight)$

- What is the sign of η under common alternatives to CES?
 - Kimball preferences or QMOR expenditure functions correspond to $\beta = 1$ (same gains as in ACR). In this case, $\eta = 0$
 - Additively separable utility corresponds to $\beta = 0$, $\rho \in (0, 1)$. In this case, $\eta > 0$. Thus, lower gains from trade liberalization

Intuition

• If all countries are symmetric, compensating variation can be written as

$$d \ln W_{j} = -\sum_{i} \lambda_{ij} d \ln \tau_{ij} + \underbrace{\rho \sum_{i} \lambda_{ij} d \ln \tau_{ij}}_{\text{Direct markup effect}} + \underbrace{-\rho d \ln P_{j}}_{\text{GE markup effect}}$$
$$= -\sum_{i} \lambda_{ij} d \ln \tau_{ij} + cov \left(\mu_{\omega,i}, \frac{dL_{\omega,i}}{L_{j}}\right)$$
where $cov \left(\mu_{\omega,i}, \frac{dL_{\omega,i}}{L_{j}}\right) = \sum_{i} \int_{\omega \in \Omega_{ji}} \left[\mu_{\omega,i} d \left(L_{\omega,i}/L_{j}\right)\right] d\omega$

Intuition

• If all countries are symmetric, compensating variation can be written as

$$d \ln W_{j} = -\sum_{i} \lambda_{ij} d \ln \tau_{ij} + \underbrace{\rho \sum_{i} \lambda_{ij} d \ln \tau_{ij}}_{\text{Direct markup effect}} + \underbrace{-\rho d \ln P_{j}}_{\text{GE markup effect}}$$
$$= -\sum_{i} \lambda_{ij} d \ln \tau_{ij} + cov \left(\mu_{\omega,i}, \frac{dL_{\omega,i}}{L_{j}}\right)$$

where
$$\mathit{cov}\left(\mu_{\omega,i}, rac{\mathit{dL}_{\omega,i}}{\mathit{L}_{j}}
ight) = \sum_{i} \int_{\omega \in \Omega_{ji}} \left[\mu_{\omega,i} \mathit{d}\left(\mathit{L}_{\omega,i}/\mathit{L}_{j}\right)\right] \mathit{d}\omega$$

• Covariance term only appears if markups are variable

Intuition

• If all countries are symmetric, compensating variation can be written as

$$d \ln W_{j} = -\sum_{i} \lambda_{ij} d \ln \tau_{ij} + \underbrace{\rho \sum_{i} \lambda_{ij} d \ln \tau_{ij}}_{\text{Direct markup effect}} + \underbrace{-\rho d \ln P_{j}}_{\text{GE markup effect}}$$
$$= -\sum_{i} \lambda_{ij} d \ln \tau_{ij} + cov \left(\mu_{\omega,i}, \frac{dL_{\omega,i}}{L_{j}}\right)$$

where
$$cov\left(\mu_{\omega,i}, \frac{dL_{\omega,i}}{L_j}\right) = \sum_i \int_{\omega \in \Omega_{ji}} \left[\mu_{\omega,i} d\left(L_{\omega,i}/L_j\right)\right] d\omega$$

- Covariance term only appears if markups are variable
- A new source of gains or losses depending on reallocation of labor and correlation with markups

4. Empirical Estimates

What is the value of η in the data?

- In the homothetic case $(\beta = 1)$ we then have $\eta = 0$, and hence no pro-competitive effects, irrespective of other parameters.
- In the non-homothetic case ($\beta=0)$ the value of η depends on $1/(1+\theta)$ and $\rho.$
 - θ is equal to the elasticity of aggregate trade flows with respect to trade costs. We use $\theta = 5$, in line with recent estimates of "trade elasticity"
 - This implies that η lies between zero (for homothetic demand) and $\rho/6$ (for non-homothetic demand).
- If we want tighter bounds, we need to estimate ho

Estimation of ρ : Approach I

- Approach I = Estimate D(·) directly and use estimate to evaluate ρ (under monopolistic competition)
- We focus on the the case of additively separable preferences in the "Pollak family". This corresponds to

$$D(p_{\omega}/P) = (p_{\omega}/P)^{1/\gamma} - \alpha.$$

- This nests the CES case (if $\alpha = 0$) but also allows for the possibility of either $\rho > 0$ (if $\alpha > 0$) or $\rho < 0$ (if $\alpha < 0$)
- · We estimate the inverse demand relation given by

$$\Delta_t \Delta_{gi} \ln p_{git}^k = \gamma \Delta_t \Delta_{gi} \ln(q_{git}^k + \alpha) + \Delta_t \Delta_{gi} \ln \epsilon_{git}^k,$$

• Non-linear IV estimate is $\hat{\gamma} = -0.347 \ [-0.373, -0.312]$ and $\hat{\alpha} = 3.053 \ [0.633, 9.940]$. This leads to $\hat{\rho} = 0.36$ and $\hat{\eta} = \hat{\rho}/6 = 0.06 \ (using \theta = 5)$

Estimate of ρ : Approach II

- **Approach II** = Use estimates of pass-through of costs into prices
- GKLP '12: cross-sectional regression of (log) prices on (log) mc yields 0.35
 - With ho= 0.65 and heta= 5, we now get $\eta=$ 0.11
- Burstein and Gopinath (2014): time series evidence on long-run exchange rate pass-through between 0.14 and 0.51
 - This gives ρ between 0.49 and 0.86 and, in turn, η between 0.08 and 0.14
- **Conclusion**: small downward adjustment in gains from trade liberalization (though with homotheticity, gains could be the same)
 - Hence the title "The Elusive Pro-Competitive Effects of Trade"