Plan of Today’s Lecture

1. Testing the Ricardian model

2. “Ad-hoc” tests
 1. MacDougall (1951), Stern (1962), Balassa (1963)

Plan of Today’s Lecture

1. Testing the Ricardian model
2. "Ad-hoc" tests
 1. Early work: MacDougall (1951), Stern (1962), Balassa (1963)
Given that Ricardo’s model of trade is the first and simplest model of international trade it’s surprising to learn that very little has been done to confront its predictions with the data.

As Deardorff (Handbook, 1984) points out, this is actually doubly puzzling:

- As he puts it, a major challenge in empirical trade is to go from the Deardorff (1980) correlation \((p^A \cdot T \leq 0) \) based on unobservable autarky prices \(p^A \) to some relationship based on observables (since, as we discussed in Lecture 3, observing \(p^A \) is nearly impossible).

- So the name of the game is modeling \(p^A \) as a function of primitives (technology and tastes).

- Doing so is (or so it might seem...) relatively trivial in a Ricardian model: relative prices are equal to relative labor costs, both in autarky and when trading.
What Has Inhibited Ricardian Empirics?
A host of reasons, Part I

- Complete specialization: If the model is right then there are some goods that a trading country doesn’t make at all.
 - **Problem 1**: this doesn’t appear to be true in the data, at least at the level for which we usually have output or price data. (Though some frontier data sources offer exceptions.)
 - **Problem 2**: if you did find a good that a country didn’t produce (as the theory predicts you should), you then have a ‘latent variable’ problem: if a good isn’t produced then you can’t know what that good’s relative labor cost of production is.

- A fear that relative labor costs, as recorded in international data, are not really comparable across countries.
 - See Bernard and Jones (AER, 1996) and later comment/reply.

- A fear that relative labor costs are endogenous (to trade flows).
Leamer and Levinsohn (1995): “the one-factor model is a very poor setting in which to study the impacts of technologies on trade flows, because the one-factor model is just too simple.”

Put another way, we know that labor’s share is not always and everywhere one, so why would you ignore the other factors of production? (Though as you will see in Kyle’s class next quarter, for an interesting two-factor model to drive the pattern of trade we need: sectors to utilize more than one factor, and for these sectors to differ in their factor intensities.)

One possible reply: perhaps the other factors of production are very tradable and labor is not. (Deep down, perhaps we should think of land as the only non-tradable factor.)

A sense that the Ricardian model is incomplete because it doesn’t say where relative labor costs come from.
Probably the fundamental obstacle: Hard to know what is the right test or specification to estimate without it being “ad-hoc”:

- As discussed in lecture 2, generalizing the theoretical insights of a 2-country Ricardian model to a realistic multi-country world is hard (and has only been done to limited success).

- As we will see shortly, many researchers have run regressions that take the intuition of a 2-country Ricardian model and translate this into a multi-country regression.

- But because these regressions didn’t follow directly from any general Ricardian model they couldn’t be considered as a true test of the Ricardian model.
Plan of Today’s Lecture

1. Testing the Ricardian model

2. ‘Ad-hoc’ tests
 1. Early work: MacDougall (1951), Stern (1962), Balassa (1963)

MacDougall (1951) made use of newly available comparative productivity measures (for the UK and the USA in 1937) to “test” the intuitive prediction of Ricardian (aka: “comparative costs”) theory:

- If there are 2 countries in the world (e.g. UK and USA) then each country will “export those goods for which the ratio of its output per worker to that of the other country exceeds the ratio of its money wage rate to that of the other country.”

This statement is not necessarily true in a Ricardian model with more than 2 countries (and even in 1937, 95% of US exports went to places other than the UK). But that didn’t deter early testers of the Ricardian model.

MacDougall (1951) plots relative labor productivities (US:UK) against relative exports to the entire world (US:UK).

- 2×2 Ricardian intuition suggests (if we’re prepared to be very charitable) that this should be upward-sloping.
- But note that even this simple intuition says nothing about how much a country will export.
MacDougall (1951) Results

<table>
<thead>
<tr>
<th>Tariffs</th>
<th>Export品</th>
<th>Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>US:</td>
<td>U.K.</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Fig. 1.
This plot was then replicated many times....

Stern (1962): 1950 data

Fig. 1. Scatter diagram of American and British ratios of output per worker and quantity of exports, 1950.
This plot was then replicated many times....

Fig. 1. Quantity of exports, U.S.: U.K. Productivity, exports, and tariffs, 1950.

For key to numbers, see Table I.
This plot was then replicated many times....

Balassa (1963): 1950 data

Surely, the comparison has only limited validity since we disregard possible changes in productivity, but it will still be of some interest if we can assume that year-to-year changes in productivity are small or that export trade follows variations in productivity with a comparatively long time lag. We have proceeded to calculate the correlation between the variables in question using export data for the years 1954-1956, and arrived at $r = 0.73$. Considering the differences in the two time periods, the results are remarkably close and suggest the relative constancy of the observed relationship.

In the above discussion we have assumed the existence of a linear relationship between the variables considered. However, the scatter diagram of Chart 1 indicates increasing deviations from the regression line as the values of observations increase, suggesting that a logarithmic relationship may provide a better fit. If this were so, a one per cent increase in productivity ratios would be associated with a given percentage change in export ratios.

The observations, with one exception, are plotted on a logarithmic scale in Chart 2 and show a close relationship. The exception is the wool industry in which American exports amount to only a small fraction of British exports. The deviation of the data of this industry from the observed pattern is explained by the fact that Britain has differential advantages over the United States in manufacturing woolens inasmuch as she can procure wool at a lower price from Commonwealth countries (Australia and New Zealand) and, also, the quality of British wool products is greatly superior to the American. The difference in quality suggests that the reliability of the comparison is greatly reduced by the differentiation of the product.

If we exclude the wool industry from the investigation, the regression equation takes the form:

$$ E_1 = \beta_0 + \beta_1 P_1 + \epsilon $$

Thus, a one per cent change in productivity ratios leads to an approximately 1.6 per cent change in the ratio of export values between the two countries. The coefficient of correlation is 0.86, with confidence limits of 0.73–0.94 at the 5 per cent level of significance. The coefficient of determination is 0.74; that is, 74 per cent of the variance in export ratios can be explained by relative productivity differences.

Productivity, Wages, and Exports

The next question to be answered is whether the explanation of export ratios given here can be improved upon if we consider not only productivity differences but also wage ratios as the determinants of export shares. Wage ratios (U.S./U.K.) are found in Column (3) of Table 1. A multiple regression equation can be fitted using productivity ratios and wage ratios as independent, and the ratio of export values as dependent, variables, since no multicollinearity is present. (The coefficient of linear correlation between productivity ratios and wage ratios is 0.20.)

Assuming additivity in the effect of the independent variables on export shares, the regression equation will take the form:

$$ E = \beta_0 + \beta_1 P + \beta_2 W + \epsilon $$

If the wool industry were included in the calculations, the correlation coefficient would be 0.78.
Plan of Today’s Lecture

1. Testing the Ricardian model

2. “Ad-hoc” tests
 1. Early work: MacDougall (1951), Stern (1962), Balassa (1963)

An update of MacDougall (1951)—or Stern (1962) or Balassa (1963)—to modern data.

To fix ideas, suppose we are interested in testing the Ricardian model by comparing the US to the UK, as MacDougall did. (GH also compare the US to 6 other big OECD countries.)

Suppose also (for now) that we only have one year of data (as MacDougall did).

GH run regressions of the following form across industries k:

\[
\log \left(\frac{X_{US}^k}{X_{UK}^k} \right) = \alpha_1 + \beta_1 \log \left(\frac{a_{US}^k}{a_{UK}^k} \right) + \epsilon_1^k,
\]

\[
\log \left(\frac{X_{US \to UK}^k}{M_{US \leftarrow UK}^k} \right) = \alpha_2 + \beta_2 \log \left(\frac{a_{US}^k}{a_{UK}^k} \right) + \epsilon_2^k.
\]
Golub and Hsieh (2000) II

- GH run regressions of the following form across industries k:

$$\log \left(\frac{X_k^{US}}{X_k^{UK}} \right) = \alpha_1 + \beta_1 \log\left(\frac{a_k^{US}}{a_k^{UK}} \right) + \epsilon_1^k,$$

$$\log \left(\frac{X_k^{US\rightarrow UK}}{M_k^{US\leftarrow UK}} \right) = \alpha_2 + \beta_2 \log\left(\frac{a_k^{US}}{a_k^{UK}} \right) + \epsilon_2^k.$$

- Here X_k^{US} is the US’s total exports of good k, whereas $X_k^{US\rightarrow UK}$ is US exports to the UK in good k (and US imports from UK are $M_k^{US\leftarrow UK}$).

- The coefficient of interest is β.
 - The intuition of the Ricardian model suggests that $\beta_1 > 0$ and $\beta_2 > 0$.
 - But there is no explicit multi-country Ricardian model that would generate this estimating equation. So it is hard to know how to interpret this test.
They also have a time series of this data for many years (from 1972-91):
- So they run this regression separately for each year, restricting the coefficients α and β to be the same across each year’s regression.
- They also apply a SUR technique to improve efficiency.

Measuring a_{US}^k and a_{UK}^k is harder than it sounds:
- One is in Dollars per hour and the other is in Sterling per hour.
- Market exchange rates are likely to be misleading (failure of PPP in short-run).
- So ‘PPP exchange rates’ are used instead. This is where international agencies collect price data for supposedly identical products (eg Big Macs) across countries and use these price observations to try to get things in real units (eg Big Macs per hour).
- GH use three different PPP measures: ‘Unadjusted’ (same PPP in each sector) is surely wrong. ‘ICP’ (the Penn World Tables’s PPP) is better, but has problem that these are expenditure PPPs. ‘ICOP PPP’ is probably best.
Table 2. Relative Exports\(^a\) and Relative Productivity\(^b,\) for 39 Manufacturing Sectors

<table>
<thead>
<tr>
<th>Period</th>
<th>Unadjusted</th>
<th></th>
<th>ICP PPP</th>
<th></th>
<th>ICOP PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\beta_{jk})</td>
<td>(R^2)</td>
<td>(\beta_{jk})</td>
<td>(R^2)</td>
</tr>
<tr>
<td>US–Japan</td>
<td>84–90</td>
<td>0.33</td>
<td>0.22</td>
<td>0.31</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.03)(^c)</td>
<td></td>
<td>(2.96)(^c)</td>
<td></td>
</tr>
<tr>
<td>US–Germany</td>
<td>77–91</td>
<td>0.18</td>
<td>0.08</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.28)(^c)</td>
<td></td>
<td>(3.55)(^c)</td>
<td></td>
</tr>
<tr>
<td>US–UK</td>
<td>79–91</td>
<td>0.09</td>
<td>0.03</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.78)(^c)</td>
<td></td>
<td>(2.45)(^c)</td>
<td></td>
</tr>
<tr>
<td>US–France</td>
<td>78–91</td>
<td>-0.19</td>
<td>0.03</td>
<td>-0.24</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-3.50)(^d)</td>
<td></td>
<td>(-3.92)(^d)</td>
<td></td>
</tr>
<tr>
<td>US–Italy</td>
<td>78–91</td>
<td>0.36</td>
<td>0.09</td>
<td>0.37</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5.48)(^c)</td>
<td></td>
<td>(6.25)(^c)</td>
<td></td>
</tr>
<tr>
<td>US–Canada</td>
<td>72–90</td>
<td>0.21</td>
<td>0.01</td>
<td>0.27</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5.29)(^c)</td>
<td></td>
<td>(6.26)(^c)</td>
<td></td>
</tr>
<tr>
<td>US–Australia</td>
<td>81–91</td>
<td>0.16</td>
<td>0.04</td>
<td>0.31</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.27)(^c)</td>
<td></td>
<td>(3.52)(^c)</td>
<td></td>
</tr>
</tbody>
</table>

Note: \(\log(X_{ij}/X_{jk}) = \alpha_{jk} + \beta_{jk} \log(a_{jk}/a_{ij}) + \epsilon_{ijk}\) estimated by seemingly unrelated regressions. \(t\)-statistics in parentheses, calculated from heteroskedasticity-consistent (White) standard errors.

\(^a\)Log of US divided by other country exports.

\(^b\)Log of US relative to other productivity.

\(^c\)The coefficient is significant at 1% level with the correct sign.

\(^d\)The coefficient is significant at 1% level with incorrect sign.
Table 4. Bilateral Trade Balances\(^a\) and Relative Productivity\(^b\), for 21 Manufacturing Sectors

<table>
<thead>
<tr>
<th>Period</th>
<th>Unadjusted</th>
<th></th>
<th>ICP PPP</th>
<th></th>
<th>ICOP PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(b_{jk})</td>
<td>(R^2)</td>
<td>(b_{jk})</td>
<td>(R^2)</td>
</tr>
<tr>
<td>US–Japan</td>
<td>84–91</td>
<td>0.14</td>
<td>0.09</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.07(^c))</td>
<td></td>
<td>(2.68(^c))</td>
<td></td>
</tr>
<tr>
<td>US–Germany</td>
<td>77–90</td>
<td>0.46</td>
<td>0.06</td>
<td>0.83</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8.71(^c))</td>
<td></td>
<td>(17.03(^c))</td>
<td></td>
</tr>
<tr>
<td>US–UK</td>
<td>79–90</td>
<td>-0.08</td>
<td>0.03</td>
<td>-0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-2.93(^d))</td>
<td></td>
<td>(-1.41)</td>
<td></td>
</tr>
<tr>
<td>US–France</td>
<td>78–90</td>
<td>-0.21</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-7.97(^d))</td>
<td></td>
<td>(0.52)</td>
<td></td>
</tr>
<tr>
<td>US–Italy</td>
<td>79–89</td>
<td>0.26</td>
<td>0.11</td>
<td>0.25</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7.11(^c))</td>
<td></td>
<td>(7.55(^c))</td>
<td></td>
</tr>
<tr>
<td>US–Canada</td>
<td>72–89</td>
<td>0.41</td>
<td>0.02</td>
<td>0.73</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(37.44(^c))</td>
<td></td>
<td>(77.15(^c))</td>
<td></td>
</tr>
<tr>
<td>US–Australia</td>
<td>81–91</td>
<td>0.72</td>
<td>0.05</td>
<td>0.89</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5.75(^c))</td>
<td></td>
<td>(7.13(^c))</td>
<td></td>
</tr>
<tr>
<td>US–Korea</td>
<td>72–90</td>
<td>-0.64</td>
<td>0.02</td>
<td>-0.12</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-11.17(^d))</td>
<td></td>
<td>(-6.71(^d))</td>
<td></td>
</tr>
<tr>
<td>US–Mexico</td>
<td>80–90</td>
<td>0.46</td>
<td>0.14</td>
<td>0.31</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6.12(^c))</td>
<td></td>
<td>(4.21(^c))</td>
<td></td>
</tr>
</tbody>
</table>

Note: \(\log(X_{jk}/M_{jk}) = \alpha_{jk} + \beta_{jk}\log(a_{jk}/a_{jk}^{-1}) + \varepsilon_{jk}\) estimated by seemingly unrelated regressions. \(t\)-statistics in parentheses, based on heteroskedasticity-consistent (White) standard errors.

\(^a\)Log of the ratio of bilateral exports to bilateral imports.

\(^b\)Log of US relative to other productivity.
Discussion of GH (2000) and MacDougall (1951)

- Results in MacDougall (1951) and GH (2000) broadly supportive of Ricardian model. But problems remain:

 1. Bhagwati (1963): Ricardian theory doesn’t necessarily predict relationships like these (the multi-country and -industry issue again).
 2. Deardorff (1984): HO model (without FPE) would predict a relationship like this too.
 3. Harrigan (2003): Simple partial equilibrium supply-and-demand models predict this relationship too. “A truly GE prediction of Ricardian models is that a productivity advantage in one sector can actually hurt export success in another sector, but GH do not investigate this prediction [and nor has anyone since.]”
 4. Harrigan (2003): A test of a trade model needs to have a plausible alternative hypothesis built in which can be explicitly tested (and perhaps rejected).

- Subsequent work (which we will discuss shortly) has tackled ‘Problem 1’, but not ‘Problems 2-4.’
Plan of Today’s Lecture

1. Testing the Ricardian model

2. “Ad-hoc” tests
 1. Early work: MacDougall (1951), Stern (1962), Balassa (1963)

Open question in Ricardian model: where do labor cost (ie productivity) differences come from?

- Relatedly, in an empirical setting: are we prepared to assume that productivity differences are exogenous with respect to trade flows?

Nunn (2007) took an innovative take on this problem.

- (But this paper is not aimed at trying to tackle the fundamental ‘Problems 1-4’ of Ricardian model-based empirical work highlighted above. We’ll return to those shortly.)
Nunn (2007) is an influential paper in the ‘Trade and Institutions’ literature (really: How Institutions \Rightarrow Trade; a separate literature considers the reverse).

As we saw in Lecture 3, this literature argues that institutional differences across countries do not just have aggregate productivity consequences (as in, e.g., Acemoglu, Johnson and Robinson, 2001), but may also have *differential* productivity differences across industries within countries (industries may differ in their ‘institutional intensity’).

If that is true, institutional differences should generate scope for comparative advantage, and hence trade.

From the perspective of today’s lecture, this acts as a nice, observable shock to CA. (To Nunn (2007) it was seen more as a test of how institutions affect productivity under the maintained Ricardian null hypothesis that productivity will then affect exports.)
The key intuition was seen in Lecture 3:

- With imperfect contract enforcement (‘bad courts’) input suppliers who make relationship-specific inputs will under-invest ex ante in fear of ex post hold-up.

- This harms productivity. And it is worse in industries that are particularly-dependent on relationship-specific inputs, and in countries with bad courts.

- Suppose further that productivity (in country i and industry k) is the simple product of the ‘relationship-specific input intensity’ of the industry, z^k, and the quality of the country’s legal system, Q_i.

- Then we have an institutional microfoundation for each country and industry’s productivity level: $a_i^k = z^k \times Q_i$.
Based on this logic, Nunn (2007) estimates the following regression, which is similar to Golub and Hseih (2000)’s regression 1:

\[
\ln x_i^k = \alpha^k + \alpha_i + \beta_1 z^k Q_i + \beta_2 h^k H_i + \beta_3 k^k K_i + \varepsilon_i^k
\]

- \(x \) is total exports and \(\alpha^k \) and \(\alpha_i \) are industry and country fixed effects.
 - The inclusion of \(\alpha_k \) is the same thing as taking differences across countries (like the US-UK comparison that GH did) and pooling all of these pairwise comparisons.

- While the regressor of interest is \(z^k Q_i \), Nunn controls for Heckscher-Ohlin-style effects by including an interaction between industry-level skill-intensity (\(h^k \)) and country-level skill endowments (\(H_i \)), and similarly for capital.
Nunn (2007)
Is this regression justified by theory?

- Nunn appeals to Romalis (AER, 2004) which derived an expression like this from theory.
 - Romalis (2004) is a Heckscher-Ohlin model with monopolistic competition and trade costs, so FPE is broken.
 - One problem with that is that Romalis doesn’t explicitly have ‘technology’ terms (like $z^k Q_i$) in his regression, though Morrow (2008) derives a version with these included.
 - A second problem with this appeal to Romalis (2004) is that the model is effectively a two-country model, so it’s not clear whether an expression like this holds in a multi-country (and zero trade costs) world.

- As we saw in Lecture 3, Costinot (2009) provides a justification for the regression if the human and physical capital terms are left out.
 - Note that by assumption, $a_i^k = z^k Q_i$. So a_i^k is log supermodular and everything in Costinot (2009) applies.
Where is the data on z^k and Q_i?

- z^k (industry-level ‘relationship-specific input intensity’):
 - Nunn follows Rajan and Zingales (AER, 1998) and assumes that the US is a ‘model technology’ country. So data from the US can shed light on the innate nature of the technology of making good k, which works (by assumption) in all countries.
 - Nunn uses $z^k = \sum_j \theta^k_j R^k_{neither}$, where the sum is over all upstream supplying industries j to industry k
 - θ^k_j is the share of industry k’s total input choices sourced from industry j (according to US 1997 Input-Ouput Table)
 - $R^k_{neither}$ is a classification done by Rauch (1999) of whether good k is a good that is neither ‘sold on an organized exchange’ nor ‘reference priced in industry journals’ (ie it is more likely to be relationship-specific.)

- Q_i (country-level ‘quality of legal system’):
 - Nunn uses standard measures from the World Bank (based on investors’ perceptions of judicial predictability and enforcement of contracts).
Nunn (2007): Examples of z^k
NB: Nunn’s z_{i}^{rs1} is what we’re calling z^k here.

<table>
<thead>
<tr>
<th>z_{i}^{rs1}</th>
<th>Industry description</th>
<th>z_{i}^{rs1}</th>
<th>Industry description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.024</td>
<td>Poultry processing</td>
<td>.810</td>
<td>Photographic & photocopying equip. manuf.</td>
</tr>
<tr>
<td>.024</td>
<td>Flour milling</td>
<td>.819</td>
<td>Air & gas compressor manuf.</td>
</tr>
<tr>
<td>.036</td>
<td>Petroleum refineries</td>
<td>.822</td>
<td>Analytical laboratory instr. manuf.</td>
</tr>
<tr>
<td>.036</td>
<td>Wet corn milling</td>
<td>.824</td>
<td>Other engine equipment manuf.</td>
</tr>
<tr>
<td>.053</td>
<td>Aluminum sheet, plate & foil manuf.</td>
<td>.826</td>
<td>Other electronic component manuf.</td>
</tr>
<tr>
<td>.058</td>
<td>Primary aluminum production</td>
<td>.831</td>
<td>Packaging machinery manuf.</td>
</tr>
<tr>
<td>.087</td>
<td>Nitrogenous fertilizer manufacturing</td>
<td>.840</td>
<td>Book publishers</td>
</tr>
<tr>
<td>.099</td>
<td>Rice milling</td>
<td>.851</td>
<td>Breweries</td>
</tr>
<tr>
<td>.111</td>
<td>Prim. nonferrous metal, excl. copper & alum.</td>
<td>.854</td>
<td>Musical instrument manufacturing</td>
</tr>
<tr>
<td>.132</td>
<td>Tobacco stemming & redrying</td>
<td>.872</td>
<td>Aircraft engine & engine parts manuf.</td>
</tr>
<tr>
<td>.144</td>
<td>Other oilseed processing</td>
<td>.873</td>
<td>Electricity & signal testing instr. manuf.</td>
</tr>
<tr>
<td>.171</td>
<td>Oil gas extraction</td>
<td>.880</td>
<td>Telephone apparatus manufacturing</td>
</tr>
<tr>
<td>.173</td>
<td>Coffee & tea manufacturing</td>
<td>.888</td>
<td>Search, detection, & navig. instr. manuf.</td>
</tr>
<tr>
<td>.180</td>
<td>Fiber, yarn, & thread mills</td>
<td>.891</td>
<td>Broadcast & wireless comm. equip. manuf.</td>
</tr>
<tr>
<td>.184</td>
<td>Synthetic dye & pigment manufacturing</td>
<td>.893</td>
<td>Aircraft manufacturing</td>
</tr>
<tr>
<td>.190</td>
<td>Synthetic rubber manufacturing</td>
<td>.901</td>
<td>Other computer peripheral equip. manuf.</td>
</tr>
<tr>
<td>.195</td>
<td>Plastics material & resin manuf.</td>
<td>.904</td>
<td>Audio & video equipment manuf.</td>
</tr>
<tr>
<td>.196</td>
<td>Phosphatic fertilizer manufacturing</td>
<td>.956</td>
<td>Electronic computer manufacturing</td>
</tr>
<tr>
<td>.200</td>
<td>Ferroalloy & related products manuf.</td>
<td>.977</td>
<td>Heavy duty truck manufacturing</td>
</tr>
<tr>
<td>.200</td>
<td>Frozen food manufacturing</td>
<td>.980</td>
<td>Automobile & light truck manuf.</td>
</tr>
</tbody>
</table>

The contract intensity measures reported are rounded from seven digits to three digits.
Nunn (2007): Main results

- Regression is \(\ln x_i^k = \alpha^k + \alpha_i + \beta_1 z_i^k Q_i + \beta_2 h_i^k H_i + \beta_3 k_i^k K_i + \varepsilon_i^k \)

TABLE IV
THE DETERMINANTS OF COMPARATIVE ADVANTAGE

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Judicial quality interaction: (z_i Q_c)</td>
<td>.289**</td>
<td>.318**</td>
<td>.326**</td>
<td>.235**</td>
<td>.296**</td>
</tr>
<tr>
<td></td>
<td>(.013)</td>
<td>(.020)</td>
<td>(.023)</td>
<td>(.017)</td>
<td>(.024)</td>
</tr>
<tr>
<td>Skill interaction: (h_i H_c)</td>
<td>.085**</td>
<td></td>
<td></td>
<td>.062**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.017)</td>
<td></td>
<td></td>
<td>(.017)</td>
<td></td>
</tr>
<tr>
<td>Capital interaction: (k_i K_c)</td>
<td>.105**</td>
<td></td>
<td></td>
<td>.074</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.031)</td>
<td></td>
<td></td>
<td>(.041)</td>
<td></td>
</tr>
<tr>
<td>Log income \times value added: (va_i \ln y_c)</td>
<td></td>
<td></td>
<td></td>
<td>-.117*</td>
<td>-.137*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.047)</td>
<td>(.067)</td>
</tr>
<tr>
<td>Log income \times intra-industry trade: (iit_i \ln y_c)</td>
<td>.576**</td>
<td></td>
<td></td>
<td>.546**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.041)</td>
<td></td>
<td></td>
<td>(.056)</td>
<td></td>
</tr>
<tr>
<td>Log income \times TFP growth: (\Delta tfp_i \ln y_c)</td>
<td>.024</td>
<td></td>
<td></td>
<td>-.010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.033)</td>
<td></td>
<td></td>
<td>(.049)</td>
<td></td>
</tr>
<tr>
<td>Log credit/GDP \times capital: (k_i CR_c)</td>
<td>.020</td>
<td></td>
<td></td>
<td>.021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.012)</td>
<td></td>
<td></td>
<td>(.018)</td>
<td></td>
</tr>
<tr>
<td>Log income \times input variety: (1 - h_i) \ln y_c</td>
<td>.446**</td>
<td></td>
<td></td>
<td>.522**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.075)</td>
<td></td>
<td></td>
<td>(.103)</td>
<td></td>
</tr>
</tbody>
</table>

Country fixed effects | Yes | Yes | Yes | Yes | Yes |
Industry fixed effects | Yes | Yes | Yes | Yes | Yes |
\(R^2 \) | .72 | .76 | .76 | .77 | .76 |
Number of observations | 22,598 | 10,976 | 10,976 | 15,737 | 10,816 |

Dependent variable is \(\ln x_i^c \). The regressions are estimates of (1). The dependent variable is the natural log of exports in industry \(i \) by country \(c \) to all other countries. In all regressions the measure of contract intensity used is \(z_i^{rs1} \). Standardized beta coefficients are reported, with robust standard errors in brackets. * and ** indicate significance at the 5 and 1 percent levels.
Interpreting the results:

- Regression coefficients are standardized, so they can be compared directly with one another. Hence institution-driven comparative advantage appears to explain more of the world than HO CA.

- But the partial R^2 in these regressions is very low (3% of the non-fixed effects variation can be explained by all regressors combined). So there is lots more to do on explaining export specialization! (Or the specification was wrong and/or there is big time measurement error.)

Nunn (2007) pursues a number of nice extensions:

- Worry about endogeneity of Q_i so IV for it with legal origin (La Porta et al, 1997/1998).

- Propensity score matching: restrict attention to British and French legal origin countries only. Then do matching on them (to control non-parametrically for observed confounders...but note that matching doesn’t helps to obviate concerns about omitted variable bias due to unobserved confounders).
TABLE VII

IV Estimates using Legal Origins as Instruments

<table>
<thead>
<tr>
<th>OLS</th>
<th>IV</th>
<th>OLS</th>
<th>IV</th>
<th>OLS</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
</tbody>
</table>

OLS and second stage IV estimates: Dependent variable is \(\ln x_{ic} \).

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Judicial quality interaction: (z_iQ_c)</td>
<td>.289**</td>
<td>.385**</td>
<td>.326**</td>
<td>.539**</td>
<td>.296**</td>
<td>.520**</td>
</tr>
<tr>
<td></td>
<td>(.013)</td>
<td>(.022)</td>
<td>(.023)</td>
<td>(.044)</td>
<td>(.024)</td>
<td>(.046)</td>
</tr>
<tr>
<td>Skill interaction: (h_iH_c)</td>
<td></td>
<td></td>
<td>.058**</td>
<td>.042*</td>
<td>.063**</td>
<td>.023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.017)</td>
<td>(.019)</td>
<td>(.017)</td>
<td>(.019)</td>
</tr>
<tr>
<td>Capital interaction: (k_iK_c)</td>
<td></td>
<td></td>
<td>.105**</td>
<td>.183**</td>
<td>.074</td>
<td>.114**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.031)</td>
<td>(.035)</td>
<td>(.041)</td>
<td>(.043)</td>
</tr>
<tr>
<td>Full set of control variables</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(R^2)</td>
<td>.72</td>
<td>.72</td>
<td>.76</td>
<td>.76</td>
<td>.76</td>
<td>.76</td>
</tr>
<tr>
<td>Number of observations</td>
<td>22,598</td>
<td>22,598</td>
<td>10,976</td>
<td>10,976</td>
<td>10,816</td>
<td>10,816</td>
</tr>
</tbody>
</table>

First stage IV estimates: Dependent variable is \(z_iQ_c \).

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>British legal origin: (z_iB_c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.295**</td>
<td>-.210**</td>
<td>-.215**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.033)</td>
<td>(.038)</td>
<td>(.036)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French legal origin: (z_iF_c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.405**</td>
<td>-.304**</td>
<td>-.298**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.025)</td>
<td>(.030)</td>
<td>(.028)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German legal origin: (z_iG_c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.072</td>
<td>-.072</td>
<td>-.088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.045)</td>
<td>(.051)</td>
<td>(.049)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socialist legal origin: (z_iS_c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.477**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.035)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(F \)-test	113.1	74.6	60.4			
Hausman test (p-value)	.00	.00	.00			
Over-id test (p-value)	.00	.00	.00			

In the second stage standardized beta coefficients are reported, with robust standard errors in brackets. The dependent variable is the natural log of exports in industry \(i \) by country \(c \) to all other countries. In the first stage I report regular coefficients, with robust standard errors clustered at the country level reported in brackets. The dependent variable is the judicial quality interaction \(z_iQ_c \). The measure of contract intensity used is \(z_i^\tau \). Although all explanatory variables in the second stage are also included in the first stage, to conserve space I do not report the first stage coefficients for these variables. The omitted legal origin category is Scandinavian. Because there are no Socialist legal origin countries in the smaller samples of columns (3)-(5), the Socialist interaction term does not appear as an instrument in these specifications. The reported \(F \)-test is for the null hypothesis that the coefficients for the interaction terms are jointly equal to zero. * and ** indicate significance at the 5 and 1 percent levels.
Similar Ricardian-style Exercises

- A number of other papers pursue similar empirical set-ups to that in Nunn (2007):
 - Cunat-Melitz (JEEA, 2012): industry-level volatility \times country-level labor market institutions.
 - Costinot (JIE, 2009): industry-level job complexity \times country-level human capital.
 - Levchenko (REStud, 2007): industry-level complexity \times country-level contracting institutions.
 - Manova (REStud, 2013): industry-level financial dependence \times country-level financial depth.
 - Chor (JIE, 2010): (roughly) all of the above in one regression, plus H-O variables (“The Determinants of Comparative Advantage”).
- Nunn and Trefler (Handbook, 2013) have nice survey of the ‘trade and institutions’ literature.
Plan of Today’s Lecture

1. Testing the Ricardian model

2. “Ad-hoc” tests
 1. Early work: MacDougall (1951), Stern (1962), Balassa (1963)

As we have discussed in the previous lecture, EK (2002) leads to closed-form predictions about the total volume of trade, but it remains silent about central Ricardian question: Who produces/exports what to whom? (Or, what is the pattern of trade?)

CDK extend EK (2002) in a number of empirically-relevant dimensions in order to bring the Ricardian model closer to the data:

- Multiple industries:
 - Now the model says nothing about which varieties within an industry get traded: fundamental EK-style indeterminacy moves ‘down’ a level.
 - But the model does predict aggregate industry trade flows.
 - These industry-level aggregate trade flow predictions can take a very Ricardian form. These predictions are the core of the paper.

- Also, an extension that weakens the assumption behind EK 2002’s clever choice of within-industry productivity distribution.
Costinot, Donaldson and Komunjer (2012)

Contribution

- The result goes beyond the preceding Ricardian literature we’ve seen (eg MacDougall (1951), Golub and Hseih (2000), and Nunn (2007)):
 - Provides theoretical justification for the regression being run. This not only relaxes the minds of the critics, but also adds clarity: it turns out that (according to the Ricardian model) no one was running the right regression before.
 - Model helps us to discuss what might be in the error term and hence whether orthogonality restrictions sound plausible.
 - Empirical approach explicitly allows (and attempts to correct) for Deardorff (1984)’s selection problem of unobserved productivities.
 - Explicit GE model allows full quantification: How important is Ricardian CA for welfare (given the state of the productivity differences and trade costs in the world we live in)?

Many countries indexed by i.

Many goods (here, “good” = “industry”) indexed by k.
 - Each comprised of infinite number of varieties, ω.

One factor (‘labor’):
 - Freely mobile across industries but not countries.
 - In fixed supply L_i.
 - Paid wage w_i.

Stanford Econ 266 (Donaldson)
Ricardian Model (Empirics)
Winter 2016 (Lecture 5)
Costinot, Donaldson and Komunjer (2012)

Assumption 1: Technology

- Productivity $z^k_i(\omega)$ is a random variable drawn independently for each triplet (i, k, ω)

- Drawn from a Fréchet distribution $F^k_i(\cdot)$:

 $$F^k_i(z) = \exp\left[-\left(\frac{z}{z^k_i}\right)^{-\theta}\right]$$

- Where:
 - $z^k_i > 0$ is location parameter CDK refer to as “fundamental productivity”. Heterogeneity in relative z^k_i's generates scope for cross-industry Ricardian comparative advantage. This “level” of CA is the focus of CDK (2012).

 - $\theta > 1$ is intra-industry heterogeneity. Generates scope for intra-industry Ricardian comparative advantage. This “level” of CA is the focus of EK (2002).
Standard iceberg formulation:

- For each unit of good \(k \) shipped from country \(i \) to country \(j \), only \(1/d_{ij}^k \leq 1 \) units arrive.

- Normalize \(d_{ii}^k = 1 \)

- Assume (log) triangle inequality: \(d_{ii}^k \leq d_{ij}^k \cdot d_{ji}^k \)
Costinot, Donaldson and Komunjer (2012)
Assumption 3: Market Structure

- Perfect competition:
 - In any country \(j \) price \(p_j^k(\omega) \) paid by buyers of variety \(\omega \) of good \(k \) is:
 \[
 p_j^k(\omega) = \min_i [c_{ij}^k(\omega)]
 \]
 - Where \(c_{ij}^k(\omega) = \frac{d_{ij}^k w_i}{z_i^k(\omega)} \) is the cost of producing and delivering one unit of this variety from country \(i \) to country \(j \).

- Paper also develops case of Bertrand competition.
 - Here, the price paid is the second-lowest price (but the identity of the seller is the seller with the lowest price).
 - This alteration doesn't change any of the results that follow, because the distribution of markups turns out to be fixed in BEJK (2003). Still get gravity at industry level.
Costinot, Donaldson and Komunjer (2012)
Assumption 4: Preferences

- Cobb-Douglas upper-tier (across goods), CES lower-tier (across varieties within goods):
 - Expenditure given by:
 \[
 x_j^k(\omega) = \left[\frac{p_j^k(\omega)}{p_j^k} \right]^{1-\sigma_j^k} \cdot \alpha_j^k w_j L_j
 \]
 - Where \(0 \leq \alpha_j^k \leq 1, \sigma_j^k < 1 + \theta \)
 - And \(p_j^k \equiv \left[\sum_{\omega' \in \Omega} p_j^k(\omega')^{1-\sigma_j^k} \right]^{1/(1-\sigma_j^k)} \) is the typical CES price index.
 - Assumption on upper-tier is not necessary for main Ricardian prediction (Theorem 3 below); can have any upper-tier utility function.
For any country i, trade is balanced:

$$\sum_{j=1}^{I} \sum_{k=1}^{K} \pi_{ij}^{k} \alpha_{j}^{k} \gamma_{j} = \gamma_{i}$$

where $\gamma_{i} \equiv \frac{w_{i}L_{i}}{\sum_{i'=1}^{I} w_{i'}L_{i'}}$ is the share of country i in world income.

As with most of the models we have seen (and will see), the key thing is just that any trade imbalance is exogenous, not that it’s exogenous and equal to zero.
Theoretical Predictions: 2 Types

1 Cross-sectional predictions:
 - How productivity \((z_i^k) \) affects trade flows \((x_{ij}^k) \) within any given equilibrium.

 These relate to previous Ricardian literature that we’ve seen above (e.g. Golub and Hsieh, 2000).

 Testable in any cross-section of data.

2 Counterfactual predictions:
 - How productivity changes affect trade flows and welfare across equilibria.

 Used to inform GE response of economy to a counterfactual scenario.

 CDK’s scenario of interest: a world without cross-industry Ricardian trade, which they explore in order to shed light on the “importance” (e.g. for welfare) of Ricardian forces for trade.
Lemma 1

Suppose that Assumptions A1-A4 hold. Let x_{ij}^k be the value of trade from i to j in industry k. Then for any importer, j, any pair of exporters, i and i', and any pair of goods, k and k',

$$\ln \left(\frac{x_{ij}^k x_{i'j}^{k'}}{x_{ij}^k x_{i'j}^{k'}} \right) = \theta \ln \left(\frac{z_i^k z_{i'}^{k'}}{z_i^k z_{i'}^{k'}} \right) - \theta \ln \left(\frac{d_{ij}^k d_{i'j}^{k'}}{d_{ij}^k d_{i'j}^{k'}} \right).$$

where $\theta > 0$.

Proof: model delivers a ‘gravity equation’ for trade flows and pair of countries i and j in each industry k. Then just take differences twice.

$$x_{ij}^k = \left(w_i d_{ij}^k / z_i^k \right)^{-\theta} \sum_{i'} (w_{i'} d_{i'j}^{k'} / z_{i'}^{k'})^{-\theta} \cdot \alpha_j^k w_j L_j$$
Cross-Sectional Predictions: Theorem 3

- Difficulty of taking Lemma 1 to data:
 - ‘Fundamental Productivity’ \((z_i^k) \) is not observed (except in autarky). This is \(z_i^k = E \left[z_i^k(\omega) \right] \).
 - Instead one can only hope to observe ‘Observed Productivity’, \(\tilde{z}_i^k \equiv E \left[z_i^k(\omega) \mid \Omega_i^k \right] \), where \(\Omega_i^k \) is set of varieties of \(k \) that \(i \) actually produces.
 - This is Deardorff’s (1984) selection problem working at the level of varieties, \(\omega \).

- CDK show that:
 \[
 \frac{\tilde{z}_i^k}{\tilde{z}_i'^k} = \left(\frac{z_i^k}{z_i'^k} \right) \cdot \left(\frac{\pi_{ii}^k}{\pi_{i'i'}^k} \right)^{-1/\theta}
 \]

- Intuition: more open economies (lower \(\pi_{ii}^k \)'s) are able to avoid using their low productivity draws by importing these varieties.
 - This solves the selection problem, but only by extrapolation due to a functional form assumption.
Cross-Sectional Predictions: Theorem 3

Theorem 3

Suppose that Assumptions A1-A4 hold. Then for any importer, j, any pair of exporters, i and i', and any pair of goods, k and k',

$$
\ln \left(\frac{\tilde{x}_{ij}^k x_{ij}^{k'}}{\tilde{x}_{ij}^k x_{ij}^{k'}} \right) = \theta \ln \left(\frac{\tilde{z}_i^k \tilde{z}_{i'}^{k'}}{\tilde{z}_i^k \tilde{z}_{i'}^{k'}} \right) - \theta \ln \left(\frac{d_{ij}^k d_{ij}^{k'}}{d_{ij}^k d_{ij}^{k'}} \right),
$$

where $\tilde{x}_{ij}^k \equiv x_{ij}^k / \pi_{ii}^k$.

- Note that (if trade costs take the form $d_{ij}^k = d_{ij} d_{ij}^k$) then this has a very similar feel to the standard 2×2 Ricardian intuition.
 - But standard 2×2 Ricardian model doesn’t usually specify trade quantities like Theorem 3 does.
 - And the Ricardian model here makes this same 2×2 prediction for each export destination j.
Cross-Sectional Predictions: Theorem 3

- Can also write this in (industry-level) ‘gravity equation’ form:
 \[\ln \tilde{x}^k_{ij} = \gamma_{ij} + \gamma^k_j + \theta \ln \tilde{z}_i^k - \theta \ln d^k_{ij} \]

- This derivation answers a lot of questions implicitly left unanswered in the previous Ricardian literature:
 - Should the dependent variable be \(x^k_i \) or something else?
 - How do we average over multiple country-pair comparisons (ie what to do with the \(j \)'s)?
 - How do we interpret the regression structurally (ie, What parameter is being estimated)?
 - What fixed effects should be included?
 - Should we estimate the relationship in levels, logs, semi-log?
 - What is in the error term? (Answer here: the error term is \(\ln d^k_{ij} \) plus measurement error in trade flows.)

- However, this specification is effectively a gravity equation (which we will see many variants of throughout this course) so this cannot be seen as a test of Ricardo vs. some other gravity model.
Cross-Sectional Predictions: Theorem 3

\[\ln \tilde{x}_{ij}^k = \delta_{ij} + \delta_j^k + \theta \ln \tilde{z}_i^k - \theta \ln d_{ij}^k \]

- In the above specification, note that \(\delta_{ij} \) and \(\delta_j^k \) are fixed-effects. Comments about these:
 - These absorb a bunch of economic variables that are important to the model (e.g. \(e_j^k \) is in \(\delta_j^k \)) but which are unknown. This is good and bad.
 - The good: CDK don’t have to collect data on the \(e_j^k \) variables—they are perfectly controlled for by \(\delta_j^k \). (And similarly for other variables like wages and the price indices.) Even if CDK did have data on these variables such that they could control for them, these variables would be endogenous and their presence in the regression would bias the results. The fixed effects correct for this endogeneity as well.
 - The bad: The usual problem with fixed-effect regressions is that the types of counterfactual statements you can make are much more limited. However, in this instance, because of the particular structure of this model, there are a surprising number of counterfactual statements that can be made with fixed effects estimates only.
A1 (Fréchet distributed technologies) is restrictive. However, consider the following alternative environment:

(i) Productivites are drawn from any distribution that has a single location parameter \(z_i^k \).
(ii) Production and trade cost differences are small: \(c_{1j}^k \simeq \ldots \simeq c_{lj}^k \).
(iii) CES parameters are identical: \(\sigma_j^k = \sigma \).

In this environment, Theorems 3 and 5 hold approximately.

Furthermore: Fréchet is the only such distribution in which Theorems 3 and 5 hold exactly, and in which the CES parameter can vary arbitrarily across countries and industries.
Well-known challenge of finding productivity data that is comparable across countries and industries

- Problem lies in converting nominal revenues into measures of physical output.
- Need internationally comparable producer price deflators, across countries and sectors (Bernard and Jones, 2001).

CDK use what they see to be the best available data for this purpose:

- ‘International Comparisons of Output and Productivity (ICOP) Industry Database’ from GGDC (Groningen).
ICOP data:

- Data are available from 1970-2007, but only fit for CDK’s purposes in 1997, the one year in which ICOP collected comparable producer price data.
- Careful attention to matching producer prices in thousands of product lines.
- 21 OECD countries: 17 Europe plus Japan, Korea, USA.
- 13 (2-digit) manufacturing industries.
Data: Productivity

As Bernard, Eaton, Jensen and Kortum (2003) point out, in Ricardian world relative productivity is entirely reflected in relative (inverse) producer prices.

That is, \[\frac{\bar{z}_i^k \bar{z}_i^{k'} }{ \bar{z}_i^k \bar{z}_i^{k'} } = \left[\frac{E[p_i^k(\omega)\mid \Omega_i^k]E[p_i^{k'}(\omega)\mid \Omega_i^{k'}]}{E[p_i^k(\omega)\mid \Omega_i^k]E[p_i^{k'}(\omega)\mid \Omega_i^{k'}]} \right]^{-1} \]

This is always true in a Ricardian model (since wages cancel).

But further impetus here:

It might be tempting to use measures of “real output per worker” instead as a measure of productivity.

But statistical agencies rarely observe physical output. Instead they observe revenues \(R_k^i \equiv Q_k^i P_k^i \) and deflate them by some price index \(P_k^i \) to try to construct “real output” \(\equiv \frac{R_k^i}{P_k^i} \).

In a Ricardian world, then, “real output per worker”
\[\frac{R_k^i}{P_k^i} = \frac{w_i L_k^i}{P_k^i L_k^i} = \frac{w_i}{P_k^i} \]

So again wages cancel. In a Ricardian world, statistical agencies’ measures of relative “real output per worker” are just relative inverse producer prices.
With all of the above comments included the final specification used by CDK (2012) is:

\[
\ln\left(\frac{x_{ij}^k}{\pi_{ii}^k}\right) = \delta_{ij} + \delta_j^k + \theta \ln \tilde{z}_i^k + \varepsilon_{ij}^k
\]

Where, given the fixed effects \((\delta_{ij}, \delta_j^k)\), log producer price \((\ln p_i^k)\) is a measure of \(-\ln \tilde{z}_i^k\).

OLS requires the orthogonality restriction that \(E[\ln p_i^k|d_{ij}^k, \delta_{ij}, \delta_j^k] = 0\).

- CDK can’t just control for trade costs, because the full measure of trade costs \(d_{ij}^k\) is not observable (trade costs are hard to observe, as we’ll discuss later in course).
- Recall that \(\varepsilon_{ij}^k\) includes the component of trade costs that is not country-pair or importer-industry specific.
- This orthogonality restriction is probably not believable. So CDK also present IV specifications (more on that shortly).
Table 3: OLS Results

- OLS estimates of θ in $\ln(x_{ij}^k/\pi_{ii}^k) = \delta_{ij} + \delta^k_j + \theta \ln \tilde{z}^k_i + \varepsilon_{ij}^k$ in columns (1) and (2)

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>log (corrected exports)</th>
<th>log (exports)</th>
<th>log (corrected exports)</th>
<th>log (exports)</th>
</tr>
</thead>
<tbody>
<tr>
<td>log (productivity based on producer prices)</td>
<td>1.123*** (0.0994)</td>
<td>1.361*** (0.103)</td>
<td>6.534*** (0.708)</td>
<td>11.10*** (0.981)</td>
</tr>
<tr>
<td>Estimation method</td>
<td>OLS</td>
<td>OLS</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>Exporter × importer fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Industry × importer fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>5652</td>
<td>5652</td>
<td>5576</td>
<td>5576</td>
</tr>
<tr>
<td>R^2</td>
<td>0.856</td>
<td>0.844</td>
<td>0.747</td>
<td>0.460</td>
</tr>
</tbody>
</table>

Notes: Regressions estimating equation (18) using data from 21 countries and 13 manufacturing sectors (listed in Table 1) in 1997. “Exports” is the value of bilateral exports from the exporting country to the importing country in a given industry. “Corrected exports” is “exports” divided by the share of the exporting country’s total expenditure in the given industry that is sourced domestically (equal to one minus the country and industry’s IPR). “Productivity based on producer prices” is the inverse of the average producer price in an exporter–industry. Columns (3) and (4) use the log of 1997 R&D expenditure as an instrument for productivity. Data sources and construction are described in full in Section 4.1. Heteroskedasticity-robust standard errors are reported in parentheses. ***Statistically significantly different from zero at the 1% level.
Endogeneity Concerns

- Concerns about OLS results:
 1. Measurement error in relative observed productivity levels: attenuation bias.
 3. OVB: eg endogenous protection (relative trade costs are a function of relative productivity)

- Move to IV analysis:
 - Use 1997 R&D expenditure as instrument for productivity (inverse producer prices).
 - This follows Eaton and Kortum (2002), and Griffith, Redding and van Reenen (2004).

- Also cut sample: pairs for which $d_{ij}^k = d_{ij} \cdot d_{ij}^j$ is more likely.
Table 3: IV Results

- IV estimates of θ in $\ln(\frac{x_{ij}^k}{\pi_{ii}^k}) = \delta_{ij} + \delta_j^k + \theta \ln \tilde{z}_i^k + \varepsilon_{ij}^k$ in columns (3) and (4)

TABLE 3

Cross-sectional results—baseline

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>log (corrected exports)</th>
<th>log (exports)</th>
<th>log (corrected exports)</th>
<th>log (exports)</th>
</tr>
</thead>
<tbody>
<tr>
<td>log (productivity based on producer prices)</td>
<td>1.123*** (0.0994)</td>
<td>1.361*** (0.103)</td>
<td>6.534*** (0.708)</td>
<td>11.10*** (0.981)</td>
</tr>
<tr>
<td>Estimation method</td>
<td>OLS</td>
<td>OLS</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>Exporter × importer fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Industry × importer fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>5652</td>
<td>5652</td>
<td>5576</td>
<td>5576</td>
</tr>
<tr>
<td>R^2</td>
<td>0.856</td>
<td>0.844</td>
<td>0.747</td>
<td>0.460</td>
</tr>
</tbody>
</table>

Notes: Regressions estimating equation (18) using data from 21 countries and 13 manufacturing sectors (listed in Table 1) in 1997. “Exports” is the value of bilateral exports from the exporting country to the importing country in a given industry. “Corrected exports” is “exports” divided by the share of the exporting country’s total expenditure in the given industry that is sourced domestically (equal to one minus the country and industry’s IPR). “Productivity based on producer prices” is the inverse of the average producer price in an exporter–industry. Columns (3) and (4) use the log of 1997 R&D expenditure as an instrument for productivity. Data sources and construction are described in full in Section 4.1. Heteroskedasticity-robust standard errors are reported in parentheses. ***Statistically significantly different from zero at the 1% level.
Counterfactual Predictions

- Remainder of paper does something different: exploring the model’s response to counterfactual scenarios.

- CDK’s scenarios aim to answer: How “important” is (cross-industry) Ricardian comparative advantage for driving trade flows and gains from trade?

 - More precisely: suppose that, for any pair of exporters, there were no fundamental relative productivity differences across industries. What would be the consequences of this for aggregate trade flows and welfare?
More formally:

1. Fix a reference country i_0.
2. For all other countries $i \neq i_0$, assign a new fundamental productivity $(z^k_i)' \equiv Z_i \cdot z^k_{i_0}$.
3. Choose Z_i such that terms-of-trade effects on i_0 are neutralized: $(w_i/w_{i_0})' = (w_i/w_{i_0})$.
4. Let $Z_{i_0} = 1$ (normalization).
5. Refer to all of this as ‘removing country i_0’s Ricardian comparative advantage.’

Questions:

(a) How to compute Z_i? (Lemma 4)
(b) How to solve for endogenous GE responses under counterfactual scenario? (Theorem 5)
(c) What model parameters and ingredients (e.g., trade costs) are needed to answer (a) and (b)?
Lemma 4

Suppose that Assumptions A1-A5 hold. For all countries $i \neq i_0$, adjustments in absolute productivity, Z_i, can be computed as the implicit solution of

$$\sum_{j=1}^{I} \sum_{k=1}^{K} \frac{\pi_{ij}^{k} (z_{i}^{k} / Z_{i})^{-\theta}}{\sum_{i'=1}^{I'} \pi_{i'j}^{k} (z_{i'}^{k} / Z_{i'})^{-\theta}} = \gamma_{i}$$

(So only need data $(\pi_{ij}^{k}, Z_{i}^{k})$ and θ. Same idea as we saw in last lecture when discussing Dekel, Eaton and Kortum (2008).)
Theorem 5 (a)

Suppose that Assumptions A1-A5 hold. If we remove country i_0’s Ricardian comparative advantage, then counterfactual (proportional) changes in bilateral trade flows, x_{ij}^k, satisfy

$$
\hat{x}_{ij}^k = \frac{(z_i^k / Z_i)^{-\theta}}{\sum_{i'=1}^{I} \pi_{i'j}^k (z_{i'}^k / Z_{i'})^{-\theta}}
$$

(Again, only need data (π_{ij}^k, z_i^k) and θ.)
Counterfactual Predictions: Welfare

Theorem 5 (b)

And counterfactual (proportional) changes in country i_0’s welfare, $W_{i_0} \equiv w_{i_0} \cdot \prod_k (p_{i_0}^k)^{-\alpha_{i_0}^k}$, satisfy

$$\hat{W}_{i_0} = \prod_{k=1}^{K} \left[\sum_{i=1}^{I} \pi_{ii_0}^k \left(\frac{z_i^k}{z_{i_0}^k Z_i} \right)^{-\theta} \right]^{\alpha_{i_0}^k / \theta}$$

CDK normalize this by the total gains from trade (\equiv welfare loss of going to autarky):

$$GFT_{i_0} \equiv \prod_{k=1}^{K} (\pi_{i_0 i_0}^k)^{-\alpha_{i_0}^k / \theta}$$
Counterfactual method requires data on relative z_i^k.

- Could use data on z_i^k from ICOP, but empirics suggest measurement error is a problem.
- Instead use trade flows to obtain ‘revealed’ productivity:

 Estimate fixed effect $\delta_i^k = \theta \ln z_i^k$ from:

$$\ln x_{ij}^k = \delta_{ij} + \delta_j^k + \delta_i^k + \varepsilon_{ij}^k$$

This is a theoretically-justified analogue of Balassa’s (1965) ‘revealed comparative advantage’ measure.
Results: Gains from Trade (Baseline)

Welfare change as fraction of total gains from trade, for each possible choice of the reference country

<table>
<thead>
<tr>
<th>Reference country</th>
<th>% change in total exports</th>
<th>Change in index of interindustry trade</th>
<th>% change in welfare</th>
<th>% change in welfare relative to the total gains from trade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>18.52</td>
<td>24.57</td>
<td>−2.90</td>
<td>−39.11</td>
</tr>
<tr>
<td>Belgium and Luxembourg</td>
<td>−1.76</td>
<td>4.12</td>
<td>0.71</td>
<td>2.64</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>3.91</td>
<td>5.62</td>
<td>−0.12</td>
<td>−1.26</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.60</td>
<td>−2.64</td>
<td>−0.40</td>
<td>−2.18</td>
</tr>
<tr>
<td>Spain</td>
<td>3.68</td>
<td>−3.89</td>
<td>−0.46</td>
<td>−7.08</td>
</tr>
<tr>
<td>Finland</td>
<td>−5.62</td>
<td>3.44</td>
<td>0.14</td>
<td>1.65</td>
</tr>
<tr>
<td>France</td>
<td>0.80</td>
<td>−0.49</td>
<td>−0.20</td>
<td>−3.09</td>
</tr>
<tr>
<td>Germany</td>
<td>−2.10</td>
<td>−8.46</td>
<td>0.14</td>
<td>2.22</td>
</tr>
<tr>
<td>Greece</td>
<td>26.35</td>
<td>−11.23</td>
<td>−4.37</td>
<td>−40.47</td>
</tr>
<tr>
<td>Hungary</td>
<td>1.70</td>
<td>−5.28</td>
<td>−0.25</td>
<td>−1.62</td>
</tr>
<tr>
<td>Ireland</td>
<td>−5.48</td>
<td>−4.31</td>
<td>0.20</td>
<td>0.74</td>
</tr>
<tr>
<td>Italy</td>
<td>−4.76</td>
<td>−9.85</td>
<td>0.14</td>
<td>2.78</td>
</tr>
<tr>
<td>Japan</td>
<td>−6.12</td>
<td>−24.75</td>
<td>0.35</td>
<td>24.48</td>
</tr>
<tr>
<td>Korea</td>
<td>2.68</td>
<td>−10.15</td>
<td>−0.44</td>
<td>−9.60</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1.95</td>
<td>−0.94</td>
<td>−0.64</td>
<td>−2.81</td>
</tr>
<tr>
<td>Poland</td>
<td>12.33</td>
<td>−22.35</td>
<td>−1.68</td>
<td>−23.09</td>
</tr>
<tr>
<td>Portugal</td>
<td>8.44</td>
<td>−13.62</td>
<td>−0.92</td>
<td>−9.12</td>
</tr>
<tr>
<td>Slovakia</td>
<td>2.33</td>
<td>14.11</td>
<td>0.82</td>
<td>4.64</td>
</tr>
<tr>
<td>Sweden</td>
<td>−2.98</td>
<td>3.03</td>
<td>0.34</td>
<td>3.30</td>
</tr>
<tr>
<td>U.K.</td>
<td>3.45</td>
<td>−4.04</td>
<td>−0.26</td>
<td>−2.94</td>
</tr>
<tr>
<td>U.S.</td>
<td>3.82</td>
<td>−3.83</td>
<td>−0.42</td>
<td>−11.71</td>
</tr>
<tr>
<td>World average</td>
<td>2.94</td>
<td>−5.72</td>
<td>−0.49</td>
<td>−5.32</td>
</tr>
</tbody>
</table>
Gains from Removing Ricardian CA?

- Some countries (e.g. Japan) appear to gain from removing Ricardian CA.

- How is this possible?

- In both model and in calibration, nothing restricts CA from coming about as purely a supply-side (conventional Ricardian) phenomenon.

 - Upper-tier utility function’s Cobb-Douglas shares could vary by country and industry (demand-driven CA). Recall that CDK didn’t need to estimate these, so didn’t restrict them in any way.

 - And trade costs were unrestricted (so they can in principle vary in such a way as to create CA). Again, recall that these were not estimated and hence not restricted (a common approach is to make TCs a function of distance, which doesn’t vary by industry and so would not create CA directly).
Gains from Removing Ricardian CA?

- With this much generality, it is possible that when you remove a country's supply-side (i.e. Ricardian, here) CA then it is actually better off.
 - Put loosely, this requires that, prior to this change, supply-side and demand/TC-driven CA were offsetting one another. That is, countries prefer (ceteris paribus) the goods that they're better at producing.
 - This ‘offsetting’ sources of CA will mean that autarky prices are actually similar to realized trading equilibrium prices.
- The paper discusses some calibration exercises that confirm this intuition:
 - If restrict things, such that either tastes are homogeneous across countries (taking the Cobb-Douglas weights of world expenditure shares), or TCs do not create CA, then fewer countries lose from removing Ricardian CA.
 - If impose both of these two restrictions then no countries lose from removing Ricardian CA.
Plan of Today’s Lecture

1. Testing the Ricardian model

2. ‘Ad-hoc’ tests
 1. Early work: MacDougall (1951), Stern (1962), Balassa (1963)