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Three Theories

Three Theories of City Growth

1 Increasing returns.

2 Random growth.

3 Location fundamentals.
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Three Theories

1. Increasing returns.

Some kind of economies of scale: knowledge spillovers, labor-market
pooling, proximity of suppliers and demanders.

Example: Krugman (1991) and subsequent literature.
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Three Theories

2. Random growth.

Stochastic process generates city sizes.

Basic theory is purely mathematical with no optimization or
equilibrium.

Example: Gabaix (1999).

N i
t is size of city i at time t.

The law of motion for city sizes is N i
t+1 = g i

t+1N
i
t where g i

t ’s are iid
across i and t with distribution f (g).
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Three Theories

3. Location fundamentals.

Locations are better or worse for economic activity. This location
quality is randomly distributed across locations.

Example: Rappaport and Sachs (2001).
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Five Facts

Five Facts about City Growth

1 Large variation in regional densities over space.

2 Zipf’s Law.

3 Rise in variation in densities corresponding to Industrial Revolution.

4 Persistence in regional densities over time.

5 Mean reversion in populations after temporary negative shocks.
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Five Facts

Unit of analysis.

They will use regions instead of cities.

Advantages:

Only regional data available.

Cities poorly defined: threshold to be counted as a city changes over
time.
In early periods, hardly anyone lived in a city.

Disadvantages: rest of the literature focuses on cities.
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Five Facts

Historical population data.

8000 years of data.

Koyama (1978) provides data on the number of archaeological sites
which acts as a proxy for population between years −6000 and 300.

Problem: Archaeological sites may be correlated with presence of
universities, i.e. cities. Or, sites may be discovered during unrelated
construction.

Problem: Archaeologists may dig outside of cities because they can’t
dig in cities. But, they can dig outside of cities in the regions that
contain cities.

Census of population for 68 provinces from Kito (1996) for years
725− 1872.

Since 1920, population available from government census for 47
prefectures.

These are matched to provide data for 39 regions.

Population is then divided by area to get density, which is the main
variable of interest. Necessary because regions are arbitrarily defined.
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Five Facts

1. Large variation in regional densities throughout history.
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Five Facts

1. Large variation in regional densities throughout history.

Ancient periods might have such high variation because many areas
were uninhabitable without technology.

Cannot reject hypothesis that any pre-1721 variation is the same as
1998 variation.

Possible explanation: port cities declined over 1721− 1872 period due
to the closure of trade.
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Five Facts

3. Rise in variation in densities corresponding to Industrial
Revolution.
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Five Facts

2. Zipf’s Law.

Rank cities by population. Regress log(rank) on log(pop). The
coefficient on log(pop) is approximately the Zipf coefficient.

Equivalently, suppose city sizes have the distribution
P{S̃ > S} = aSζ .

Surprisingly, for cities this is usually almost exactly 1. For example,
Gabaix (1999) estimates −1.004 for US cities.

The Zipf coefficient is also a measure of density variation. For
uniformly distributed population, it will be −∞. For fully
agglomerated population, it will be 0.

To estimate the coefficient, due to measurement error they
instrument on modern population. Is this the right way to deal with
measurement error?

Gabaix and Ibragimov (2009) show that using log(rank − 1/2)
minimizes bias. Clauset, Shalizi, and Newman (2009) suggest that
MLE is better than OLS for estimating the coefficients of power laws.
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Five Facts

4. Persistence in regional densities over time.
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Five Facts

4. Persistence in regional densities over time.

Population density across regions highly correlated over time.

Could high ancient correlation be due to correlation of archaeological
digs and current population?
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Five Facts

5. Mean reversion in populations after temporary shocks.

Do temporary shocks to population have permanent effects?

Natural experiment: bombing of Japanese cities during World War II.

Data: 303 Japanese cities. Population measured in a census about
every 5 years.

Measures of shock intensity: dead and missing normalized by city
population, buildings destroyed per resident.

Necessary to control for government spending on reconstruction.
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Five Facts

5. Mean reversion in populations after temporary shocks.

66 cities targeted in Allied bombing campaign.

Shocks are large: Bombing destroyed 2.2 million buildings, or half of
all structures in targeted cities. 2/3 of productive capactity was
destroyed. 300, 000 people were killed in total and 40% of people
became homeless.

Hiroshima: 80, 000 killed (20% of population). Nagasaki: 25, 000
killed (8.5% of population). Tokyo: 80, 000 killed in a single raid. But
only 50.8% of city destroyed, about at the median for all targeted
cities.

Shocks are highly variable: 80% of cities in sample had no damage
from bombings at all.

Shocks are plausibly exogenous: For example, Kokura would have
received a nuclear bomb instead of Nagasaki if not for cloud cover.

Shocks are temporary.
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5. Mean reversion in populations after temporary shocks.
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Five Facts

5. Mean reversion in populations after temporary shocks.

Suppose city size follows log S i
t = Ωi + εi

t and shocks are
εi
t+1 = ρεi

t + ν i
t+1 where ρ ∈ [0, 1] and ν i

t is iid.

First-differencing yields log S i
t+1 − log S i

t = εi
t+1 − εi

t . Substituting,
we get

log S i
t+1 − log S i

t = (ρ− 1)v i
t + [v i

t+1 + ρ(1− ρ)εi
t−1].

If ρ = 1, log city size follows a random walk. If ρ = 0, log city size is
iid.

They estimate

log S i
1960 − log S i

1947 = (ρ− 1)v i
1947 + [v i

1960 + ρ(1− ρ)εi
1934].

Their measure of the innovation is log S i
1947 − log S i

1940.

Because this might be correlated with past growth rates, they
instrument with buildings destroyed per capita and deaths per capita.

Henry Swift (MIT) Davis and Weinstein (2002) April 21, 2010 19 / 27



Five Facts

5. Mean reversion in populations after temporary shocks.

Suppose city size follows log S i
t = Ωi + εi

t and shocks are
εi
t+1 = ρεi

t + ν i
t+1 where ρ ∈ [0, 1] and ν i

t is iid.

First-differencing yields log S i
t+1 − log S i

t = εi
t+1 − εi

t . Substituting,
we get

log S i
t+1 − log S i

t = (ρ− 1)v i
t + [v i

t+1 + ρ(1− ρ)εi
t−1].

If ρ = 1, log city size follows a random walk. If ρ = 0, log city size is
iid.

They estimate

log S i
1960 − log S i

1947 = (ρ− 1)v i
1947 + [v i

1960 + ρ(1− ρ)εi
1934].

Their measure of the innovation is log S i
1947 − log S i

1940.

Because this might be correlated with past growth rates, they
instrument with buildings destroyed per capita and deaths per capita.

Henry Swift (MIT) Davis and Weinstein (2002) April 21, 2010 19 / 27



Five Facts

5. Mean reversion in populations after temporary shocks.

Suppose city size follows log S i
t = Ωi + εi

t and shocks are
εi
t+1 = ρεi

t + ν i
t+1 where ρ ∈ [0, 1] and ν i

t is iid.

First-differencing yields log S i
t+1 − log S i

t = εi
t+1 − εi

t . Substituting,
we get

log S i
t+1 − log S i

t = (ρ− 1)v i
t + [v i

t+1 + ρ(1− ρ)εi
t−1].

If ρ = 1, log city size follows a random walk. If ρ = 0, log city size is
iid.

They estimate

log S i
1960 − log S i

1947 = (ρ− 1)v i
1947 + [v i

1960 + ρ(1− ρ)εi
1934].

Their measure of the innovation is log S i
1947 − log S i

1940.

Because this might be correlated with past growth rates, they
instrument with buildings destroyed per capita and deaths per capita.
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Five Facts

5. Mean reversion in populations after temporary shocks.

The estimate of ρ− 1 is −1.027, so this implies that ρ ≈ 0.

Over a 15− 20 year period population is highly stationary.

Government spending on reconstruction significant and positive (σ
increase leads to 2.2% increase in size of city). However, these sums
were typically small.

To see if US targeted fast growing cities, control for 1925− 1940
growth. Reduces coefficient for 1960, but extending to 1965 gets
ρ ≈ 1.

Another objection is that perhaps refugees left the city, then later
returned. So, consider Hiroshima and Nagasaki where deaths were
very high.
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Which Theory?

Which theory fits the data?
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Which Theory?

Which theory fits the data?

Increasing returns theory’s strongest point is predicting the rise of
densities during the Industrial Revolution.

Random growth theory’s strongest point is predicting Zipf’s Law but
fails at describing mean reversion.

According to Davis and Weinstein, location fundamentals does best at
explaining the data, with the exception of the Industrial Revolution.
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Which Theory?

Deriving Zipf’s Law from random growth.

S i
t = N i

t/
∑

N i
t is size of city i at time t divided by the total

population at time t.

Let γi
t = g i

t (
∑

N i
t+1/

∑
N i

t). The law of motion for normalized city
sizes is S i

t+1 = γi
t+1S

i
t where γi

t ’s are iid across i and t with
distribution f (γ).

We must have that
∑

S i
t = 1. Therefore, E [γ] = 1, or

∫
γf (γ)dγ.

Let Gt(S) = P{St > S} be the distribution of city sizes.

Gt+1(S) = P{St+1 > S} = P{γt+1St+1 > S} = E [1St>S/γt+1
] =

E [E [1St>S/γt+1
|γt+1]] = E [P{St > S/γt+1}] = E [Gt(St >

S/γt+1)] =
∫

Gt(S/γ)f (γ)dγ.

Suppose there is a steady-state process G (S). One candidate that is
a fixed point of this equation is G (S) = a/S , i.e. a Zipf’s Law with
coefficient −1.
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Conclusions

Conclusions

Since there is high persistence, and no evidence of break points,
policy doesn’t do much?

Variation in densities has always been high.

Zipf’s Law seems to hold. (maybe?)

Variation rose during the Industrial Revolution.

Densities persist in the face of strong temporary shocks.

Random growth theory can be rejected, but parts of increasing
returns and location fundamentals cannot.
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