Increasing Returns and Economic Geography

Paul Krugman

JPE,1991

March 4, 2010

Paul Krugman (JPE,1991)

Increasing Returns

March 4, 2010 1 / 18

э

Introduction

- Krugman claims that the study of economic outcomes across space had been largely ignored in "standard" economic analysis.
- Yet, "...facts of economic geography are surely among the most striking features of real-world economies...". E.g., nighttime satellite photos of Europe suggest a center-periphery pattern.
- Motivation: Provide a formal model to incorporate insights from economic geography.
- **Research Question**: Why does manufacturing become concentrated (agglomerated) in few regions?

The paper

- Presents a model of geographical concentration.
- Key Ingredients:
 - Economies of scale (agglomerating, attractive force)
 - Transportation costs (centrifugal force)
- The paper presents "possibility" results, rather than a tight characterization.
- Outline.
 - Quick review "old" economic geography.
 - Set-up of the model.
 - Equilibrium.
 - Concluding comments.

Ideas from "Old" Economic Geography

• Positive feedback (Myrdal, Hirschman and others).

- Manufactures tend to concentrate in large markets, and markets become larger where manufactures production is concentrated.
- The paper captures this feedback in a (static) model.
- Marshall's exposition of external economies applied to industry localization (other reasons for concentration)
 - Pooled market for workers with specific skills.
 - Nontradable specialized inputs.
 - Informational spillovers across firms.

Set-up of the Model: Fundamentals I

- World is divided in two regions, 1 and 2.
- Two goods, agricultural (A) and manufacturing (M).
- Preferences Share μ of income spent in consumption of manufactured goods, C_M,

$$U=C^{\mu}_{M}C^{1-\mu}_{A}.$$

 Consumption of manufactured goods C_M is a CES composite of manufacturing intermediates, c_i,

$$C_{M} = \left[\sum_{i=1}^{N} c_{i}^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}} \quad \text{with} \ \sigma > 1.$$

Fundamentals II: Endowment and Technology

- The only **endowment** is labor. World population is 1, divided into
 - Workers: mobile across regions, representing a fraction μ of world pop.,

$$L_1 + L_2 = \mu.$$

- Peasants: cannot migrate, fraction $(1 \mu)/2$ in each region,
- **Manufacturing Technology** The production of intermediate *x_i* involves a marginal cost and a fixed cost,

$$x_i = \frac{L_{Mi}}{\beta} - \frac{\alpha}{\beta}$$
 and $L_i \ge \alpha \implies L_{Mi} = \alpha + \beta x_i.$

This fixed cost is the source of economies of scale.

• **Agricultural Technology** is CRS. Peasants are the only input to produce agricultural goods, with unit labor requirement equal to one.

Fundamentals III

Transportation Costs between regions

- Iceberg cost $\tau(<1)$ for manufactured goods.
- Costless transportation for agricultural goods.

Market Structure

- Assume monopolistic competition à la Dixit-Stiglitz in the suppliers of manufacturing intermediates.
- Competitive behavior in the agricultural sector.

Manufacturing Firm Behavior in Region i

- Elasticity of demand of a *M*-firm is σ . Marginal cost is βw_i .
- Profit-maximizing price of an intermediate producer implies

$$p_i = \frac{\sigma}{\sigma - 1} \beta w_i.$$

- Free entry drives profits to zero, $p_i x_i w_i (\alpha + \beta x_i) = 0$.
- Thus, all the firms produce the same regardless of the wage rate,

$$x_1=x_2=\frac{\alpha(\sigma-1)}{\beta}.$$

 This implies only extensive margin adjustments. The number of manufactured goods produced in each region is proportional to the number of workers,

$$\frac{n_1}{n_2} = \frac{L_1}{L_2}$$

Equilibrium

- Normalize price of agricultural goods to 1.
- Let p_i , denote the price of an intermediate produced (and purchased) in region *i*, and w_i , wage in region *i*.

Competitive Equilibrium

Set of prices p_i , w_i , consistent with agent utility maximization (including a migration decision for manufacturing labor) and firm profit maximization for i = 1, 2.

Solve the equilibrium in two steps.

- "Short-Run equilibrium": Take allocation of workers as given, and find equilibrium prices (as a function of L_i).
- "Long-Run equilibrium": Allow workers to migrate to equalize real wages.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Short-Run Equilibrium: preliminaries

 Denote by c_{ij} consumption in region i of a representative region j product. The price for country 1 of imports is p₂/τ, relative demand is

$$\frac{c_{11}}{c_{12}} = \left(\frac{p_1\tau}{p_2}\right)^{-\sigma} = \left(\frac{w_1\tau}{w_2}\right)^{-\sigma}$$

• Let z₁₁ denote the ratio of region 1 expenditure on local manufactures to that on manufactures from the other region,

$$z_{11} = \left(\frac{n_1}{n_2}\right) \left(\frac{p_1\tau}{p_2}\right) \left(\frac{c_{11}}{c_{12}}\right) = \left(\frac{L_1}{L_2}\right) \left(\frac{w_1\tau}{w_2}\right)^{1-\sigma}.$$
 (1)

• Similarly, the spending of region 2 on region 1 products is

$$z_{12} = \left(\frac{L_1}{L_2}\right) \left(\frac{w_1}{w_2\tau}\right)^{1-\sigma}.$$
 (2)

Short-Run equilibrium: Wage determination

• Regional output is (wage rate of peasants is the numérarie)

$$Y_i = \frac{1-\mu}{2} + w_i L_i, \quad i = 1, 2.$$
 (3)

Total income of region i workers is equal to total spending,

$$w_{1}L_{1} = \mu \left[\left(\frac{z_{11}}{1 + z_{11}} \right) Y_{1} + \left(\frac{z_{12}}{1 + z_{12}} \right) Y_{2} \right], \quad (4)$$

$$w_{2}L_{2} = \mu \left[\left(\frac{1}{1 + z_{11}} \right) Y_{1} + \left(\frac{1}{1 + z_{12}} \right) Y_{2} \right], \quad (5)$$

- As $Y_i(w_i)$ and $z_{1i}(w_1/w_2)$, (4) and (5) define implicitly wages consistent with a particular labor allocation.
- If $L_1 = L_2$, then $w_1 = w_2$. If $L_1 > L_2$, no robust prediction. 2 forces: home market effect versus competition for the local peasant market.

Long-Run equilibrium: Determination

- Look at migration decision for workers: real wage equalization.
- Let $f = L_1/\mu$ denote the share of manufacturing labor in region one, the price index of manufactured goods are

$$P_{1} = \left[fw_{1}^{1-\sigma} + (1-f) \left(\frac{w_{2}}{\tau}\right)^{1-\sigma} \right]^{\frac{1}{1-\sigma}},$$
(6)
$$P_{2} = \left[f\left(\frac{w_{1}}{\tau}\right)^{1-\sigma} + (1-f) (w_{2})^{1-\sigma} \right]^{\frac{1}{1-\sigma}}.$$
(7)

• Denote real wages by ω_i , then

$$\frac{\omega_1}{\omega_2} = \frac{w_1}{w_2} \left(\frac{P_1}{P_2}\right)^{-\mu}.$$

If w₁ = w₂, a shift of workers from region 2 to 1, lowers P₁ and raises P₂. This raises relative real wages in 1. Additional force for agglomeration: workers in the region with larger population face a lower price for manufactured goods.

Paul Krugman (JPE,1991)

Analysis of Symmetric Equilibrium

- Is the equilibrium f = 1/2 stable? Depends on how ω_1/ω_2 changes with f.
 - If ω₁/ω₂ increases, agents will tend to migrate to the region that tends to have more population.
 - If ω_1/ω_2 decreases with f, we have regional convergence.
- Two forces working towards divergence (home market effect and price index effect) and one working toward convergence, competition for local peasant market.
- This is a local statement. Cannot show that ω_1/ω_2 is monotonic in f.
- Stability depends on the three structural parameters of the model
 - The share of expenditure on manufactured goods, μ .
 - The elasticity of substitution among products, σ .
 - Iceberg cost τ. Numerical example in which for high τ, ω₁/ω₂ decreases in f, while it increases for low τ.
- Turn to other equilibrium in which we can do comparative statics.

(日) (同) (三) (三)

Complete Agglomeration Equilibrium

- Look to another candidate equilibrium: complete agglomeration.
- Advantages: More tractable, can obtain comparative statics.
- Suppose all workers are concentrated in region 1.
- Manufacturing output in region 1 (Y₁ Y₂ = w₁L) has to serve all demand (µ(Y₁ + Y₂)),
- Let *n* be the number of manufacturing firms. Each firm has value.

$$V_1=\frac{\mu}{n}(Y_1+Y_2)$$

Complete Agglomeration Equilibrium II

- Is it possible for a "defecting" firm to commence production profitably in region 2? If not, concentration of production is an equilibrium.
- To produce in region 2, need to compensate workers for the fact that (almost) all manufactures are imported. Real wage equalization ⇒

$$\frac{w_2}{w_1} = \left(\frac{1}{\tau}\right)^{\mu}.$$

- The marginal cost of producing in region 2 is higher (and p_2).
- Sales of the defecting firm vis-à-vis region 1 firm are rescaled by $(w_2/w_1\tau)^{1-\sigma}$ when selling to region 1 and $(w_2\tau/w_1)^{1-\sigma}$, to 2.
- Value of defecting firm

$$V_1 = \frac{\mu}{n} \left[\left(\frac{w_2}{w_1 \tau} \right)^{1-\sigma} Y_1 + \left(\frac{w_2 \tau}{w_1} \right)^{1-\sigma} Y_2 \right]$$

• au is a disadvantage to sell to region 1, but advantage, to region 2.

Complete Agglomeration Equilibrium III, Comparative Statics

- This analysis has not taken into account the fixed cost.
- Zero profit conditions implies, $V_i \propto w_i \alpha / \beta \equiv$ fixed cost.
- A profitable deviation has to satisfy

$$\frac{V_2}{V_1} > \frac{w_2}{w_1} = \tau^{-\mu}.$$

• This reduces to the analysis of $\nu > 1$, where

$$\nu = \frac{1}{2} \tau^{\mu\sigma} \left[(1+\mu)\tau^{\sigma-1} + (1-\sigma)\tau^{1-\sigma} \right].$$

- First result: $\frac{\partial \nu}{\partial \mu} < 0$, the larger the share of income spent on manufactured goods, the lower the relative sales of the defecting firm.
- Interpretation: stronger home market effect, larger relative size of region 1 market. Workers demand a larger premium to move to region 2.

Paul Krugman (JPE,1991)

Complete Agglomeration, Comparative Statics 2

- Transportation costs. Two cases,
 - If σ(1 − μ) < 1, then ν < 1. Intuition: if goods are very complementary (in this model, this implies economies of scale in equilibrium) or the share of manufacturing in expenditure is so high, it is unprofitable to start a firm in region 2 regardless of τ.</p>
 - Conversely, we have that $\partial \nu / \partial \tau < 0$ (around the relevant range $\nu = 1$). Higher transportation costs militate against regional divergence.
- Elasticity parameter σ,

$$sign\left[\frac{\partial\nu}{\partial\sigma}
ight] = -sign\left[\frac{\partial\nu}{\partial\tau}
ight],$$

higher elasticity of substitution works against agglomeration.

• Alternative view: implicit derivation on the boundary u = 1,

$$rac{\partial au}{\partial \mu} < \mathsf{0}, \quad rac{\partial au}{\partial \sigma} > \mathsf{0}.$$

イロト 不得 トイヨト イヨト 二日

Concluding Comments

- This paper proposes a framework to analyze geographical concentration from a neoclassical approach, using a trade-off between economies of scale and transportation costs.
- One virtue of this paper is that opens many doors to research ideas.
 - Test empirically comparative statics. Decrease in transportation costs (e.g., railway expansion) generate agglomeration (?).
 - Look at technological spillovers rather than pecuniary externalities as a source of agglomeration (Durlauf, coordination games).
 - Study how initial conditions matter for agglomeration (Matsuyama).
 - Incorporate dynamics in the model can be interesting. Growth model with non-homothetic preferences can generate agglomeration.
 - A more realistic extension could be to consider what happens when the transportation cost is a function of distance, and there are two sectors with different degree of economies of scale.

イロト 不得 トイヨト イヨト 二日