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Abstract

The industrial revolution in developing countries represents an unfinished process. Urban

centers, dominated by manufacturing and services, sit alongside rural hinterlands dominated

by subsistence agriculture. This paper uses a 1957-2000 district-level panel data set to test

whether hot weather shocks have unequal effects on mortality in rural and urban populations

in India. This depends on the degree to which incomes are affected by weather shocks and

the extent to which individuals can smooth their survival across these shocks. We find that

a one standard deviation increase in high temperature days in a year decreases agricultural

yields and real wages by 12.6 % and 9.8 %, respectively, and increases annual mortality among

rural populations by 7.3 %. By contrast, in urban areas, there is virtually no evidence of an

effect on incomes and a substantially smaller increase in the mortality rate (of about 2.8%

for a one standard deviation increase in high temperature days). Importantly, we find that

greater availability of credit mitigates the mortality effects of high temperatures in rural areas,

presumably by facilitating consumption smoothing. Finally, with all else held constant, the

estimates imply that global warming will lead to meaningful reductions in life expectancy in

rural India by the 2015-2029 period and quite large declines by the end of the century.

∗Correspondence: ddonald@mit.edu. Affiliations: Burgess: LSE and CEPR; Deschenes: UCSB and NBER;
Donaldson: MIT, CIFAR and NBER; Greenstone: MIT and NBER. We are grateful to Oriana Bandiera, Marianne
Bertrand, Tim Besley, Bronwen Burgess, Esther Duflo, Matthew Gentzkow, Selim Gulesci, Mushfiq Mobarak,
Ben Olken, Torsten Persson, Imran Rasul, Jesse Shapiro, Nick Stern, Robert Townsend, Dean Yang and seminar
participants at Asian Development Institute Patna, Boston University, Chicago Booth, Columbia, Harvard Kennedy
School, IIES Stockholm, Indian Statistical Institute Delhi, LSE, MIT-Harvard, MOVE Barcelona Conference 2010,
NEUDC 2009, Pakistan Institute of Development Economics Silver Jubilee Conference, Pompeu Fabra, Stanford,
UCSB, the World Bank, and Yale for helpful comments.

1

mailto:ddonald@mit.edu


1 Introduction

The industrial revolution in developing countries represents an unfinished process. Whereas

in the developed nations the growth of manufacturing and services has made agriculture a small

contributor to total production and employment this is not the case in developing countries. In

these countries urban centers, dominated by manufacturing and services, sit alongside rural hinter-

lands dominated by subsistence agriculture. This can be seen starkly in light images of the earth.

Whereas the developed nations are lit up, vast tracts of the developing nations remain black with

the darkness punctuated only by the bright spots of towns and cities.

This paper is about whether hot weather has an unequal effect on mortality for rural and

urban populations in one country—India. This is not only salient for thinking about how current

populations can be protected against weather risk but also because global warming will likely

mean that rural and urban populations will be exposed to hotter weather in the future. Greater

dependence on weather dependent forms of production may imply that rural populations suffer

larger income shocks as a result of unusually hot weather and may therefore be less able to smooth

survival across these shocks. And the situation may worsen considerably as the number of hot

days they are exposed to increase over the current century.

To capture this intuition we build on standard models of health as human capital (as pioneered

by Grossman [1972]; see Becker [2007] for a synthesis) to construct a neoclassical model of con-

sumption choices where citizens have to choose to spend the incomes they earn either on health

goods (which improve survival chances but provide no utility) or on consumption goods (which

provide utility). If incomes fall due to higher temperatures or their health worsens due to the

direct effect of exposure to high temperatures, they face a trade-off between survival enhancing

expenditures and utlity enhancing expenditures. Through the choice of expenditures on survival

enhancing goods (e.g., taking a day off from work in the heat), the model predicts that one margin

of adjustment is by assuming the risk of a higher probability of death. The model also describes

how the effects of higher temperatures on mortality may be higher for rural populations because

the income shocks they suffer from hot weather are more severe. Naturally, we expect these ef-

fects to be stronger when credit is relatively expensive or constrained, as the ability to borrow

(or decrease savings) will help citizens to smooth consumption and hence survival across periods.

This suggests that increased access to banks that reduce the cost of borrowing should mitigate the

impact of hot weather on mortality.

We explore these implications empirically by drawing on a unique panel data set on Indian

districts which spans almost the entire post-Independence period from 1957 to 2000. For each

district, we have annual observations for mortality (both for infants and those aged one and above)

which are also recorded seperately for rural and urban populations. Overlaid on this is a dataset

on daily records of temperature and precipitation for each Indian district across the 1957-2000

period. This set-up allows us to exploit interannual variation to estimate the mortality effect of
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district-level hot weather on constituent rural and urban populations. We can also compare the

mortality responses to hot weather observed in Indian district level data to those in county level

data from the US.

Figure 1 plots, for India and the US, the impact of having an extra day whose daily mean

temperature lies in each of eleven temperature bins relative to a day in the reference category bin

of 70◦-72◦ F.1 These response functions are based on very rich statistical models that adjust for

location (e.g., districts in India and counties in the US) fixed effects and year fixed effects (see the

below for further details). As can be seen in the figure, interannual variation in temperature in the

US shows only a very weak co-movement with the mortality rate. By strict contrast, hot days in

India appear to lead to significantly more death. Mortality increases steeply when there are more

days at or above the 89◦-91◦ F range, relative to the 70◦-72◦ F range. And these effects are large -

for example, a single additional day with a mean temperature above 97◦ F , relative to a day with

a mean temperature in the 70◦-72◦ F range, increases the annual mortality rate by roughly 0.75

%.

The empricial exercise begins by examining the effects of hot temperature days on productivity,

wages and prices for rural and urban areas of India. We find that hot weather sharply depresses

agricultual yields and the wages of agricultural laborers in rural areas but exerts no impact on

urban productivity, wages or prices. What is more, when we divide weather into that for the

growing season and the non-growing season we find that it is growing season weather that has a

significantly larger effect on rural incomes and rural mortality. Both these facts are consistent with

the income effect of hot weather being more severe for rural versus urban populations.

We then turn to the first large-scale effort to examine the relationship between weather and

death in a modern, developing economy. We begin by looking at whether hot weather affects

the mortality of rural and urban populations differentially. We find that it is effects on the rural

population that push mortality up as temperatures rise above 90◦ F. In contrast, the mortality

effects for urban India are limited to the very hottest days that occur infrequently (e.g., days

where temperature exceeds 97◦ F). Pulling it together, the same district-level hot weather shocks

have a much more profound impact on mortality in rural versus urban populations in India.

Urbanization and structural change appears to have conferred an advantage in terms of largely

uncoupling survival from weather related risk.

These results match well with a development literature on lean or hungry seasons (e.g. Khandker

[2012]). Hunger during pre-harvest lean seasons is widespread in the agrarian areas of Asia and Sub-

Saharan Africa (e.g. Bryan, Chowdhury, and Mobarak [2013], Paxson [1993], and Dercon and Krishnan

[2000]). Malnutrition and morbidity are highest in the run-up to the post-monsoon harvest when

food stocks are depleted, demand for labor and agricultural wages are low, and food prices are

high. Abnormally hot weather during this period (particularly days above the 89◦-91◦ F) limit

the formation of grains in key crops such as rice and wheat and therefore negatively affects the

1The US line comes from the 1968-2002 analysis of US counties Deschenes and Greenstone [2011].
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sizes of harvest and accentuates income downturns for those dependent on agriculture. Therefore

hot weather can be particularly damaging for agricultural incomes, wages and prices during the

post-monsoon growing season which is precisely what we find in our data. In effect, when a large

income shock collides with high and rising levels of malnutrition the effect can be lethal. Ceteris

paribus, this lack of seasonality (both in nutritional status and in incomes) coupled with limited

exposure to income volatility induced by weather shocks is a key advantage of living in urban

areas.

A variety of behaviours have evolved to deal with weather shocks during the lean season in

rural areas—running down food stocks and other assets (e.g. savings, livestock), borrowing money,

forward selling labor and migrating have all been documented in the literature (Dreze and Sen

[1989], Paxson [1993], Townsend [1994], and Deaton [1997]). Whilst these responses may help

smooth income across local, idiosynchratic shocks they may be less successful in dealing with

aggregate weather shocks. The state can step in on these occasions (for example by distributing

food or by enabling access to financial institutions) and one of India’s succeses has been the ending

of famine in the post-Independence era. However, our results suggest that the interaction between

chronic hunger (for example, amongst landless laborers and small cultivators) and weather shocks

still result in significant excess mortality in the rural hinterlands of India. Much of this excess

mortality will not be on a mass scale in a local area and may therefore may be ‘below the radar’

of the state. However, our finding that the survival of large numbers of rural citizens is still at the

mercy of the weather in modern day India represents an uncomfortable and striking finding.

Given this situation a key prediction from our model is that access to banks should mitigate

the impact of hot weather on mortality. Using the identification strategy of Burgess and Pande

[2005] we find some evidence that rural bank branch expansion in India mitigated the impact of

hot weather on mortality. This is a preliminary result that we are currently probing further, but it

is potentialy important for two reasons. First, because it confirms the key prediction in our model

that technologies which enable citizens to smooth consumption across hot weather shocks should

assist them in avoiding mortality. And second, because it provides confirmation that the state can

take actions which protect citizens from the mortality impacts hot weather shocks.

The latter concern will become increasingly pressing as climate change proceeds. In a final sec-

tion of this paper we use our estimated coefficients of the within-sample (1957-2000) temperature-

death relationship in India to investigate the mortality predictions implied by two leading clima-

tological models of climate change. To see this, consider an average Indian born in a rural area

during the 2015-29 period, a period in the future in which climatological models predict that tem-

peratures will be warmer than in 1957-2000. Our results imply that, if this Indian lived the rest of

her life in a world where there is no further warming beyond what has occurred by 2015-29, then

she would be expected to have life expectancy that is 1 year shorter than were she born in our

within-sample period. This estimated effect increases to life expectancy reductions of 2.7 years

and 6.9 years for individuals born in 2045-59 and 2075-2099, respectively (again, in a scenario in

4



which there is no further warming than what has occured under business-as-usual scenarios by the

period in question.2 In contrast, life expectancy at birth for urban populations in India will largely

be unnaffected by climate change as will populations in developed countries like the US.

This is a striking difference in health trajectories. The direction of travel is clear and though

we fully expect rural Indians to adapt to an anticipated and slowly warming climate in various

ways the fact that rural Indian citizens are already not fully protected from the mortality effects

of hot weather implies that much more careful thinking has to be applied to understanding how

such protection might be afforded. Famines may have indeed come to an end in India. However,

our results suggest that the citizens of rural India still live in a world where inclement weather can

significantly elevate mortality. The fact that the weather will likely become more inclement via

global warming is then likely to pose particular challenges in these poor, rural settings.

The remainder of this paper proceeds as follows. The next section outlines a theoretical model

that describes the mechanisms through which weather might be expected to lead to death. Section

3 describes the background features of India in our sample period from 1957-2000, as well as the

data on weather, death and economic variables that we have collected in order to conduct our

analysis. Section 4 outlines our empirical method. Section 5 presents the key results from the

paper, and finally Section 6 concludes.

2 A Model of Weather and Survival Choice

In this section we describe a theoretical framework within which to examine the potential for

weather variation to pass through into mortality. Weather variation could cause human health

to suffer because extreme weather conditions put human physiology under stress or exacerbates

the disease environment. In our framework households can choose to spend a share of their

scarce income on health-improving goods that enhance the probability of survival in the face

of such a ’direct’ weather-induced health shock. Complicating matters, however, is the fact that

agriculturally-engaged agents’ real incomes also depend on the weather. That is, even absent direct

effects of weather on death, agents’ mortality risk may rise due to their reduction in income and

subsequent reduction in health-improving goods. We extend the canonical framework presented

in Becker [2007] in order to elucidate these interacting effects of weather on death.

2.1 Basic Setup

Consider a representative agent who is potentially infinitely-lived. However, the agent faces some

probability of death in any period—the probability of the agent being alive in period t having

survived up to period t− 1 is given by the conditional probability of survival, st ≤ 1. The agent’s

survival chances are endogenous. Let st = s(ht, Tt), where ht is the amount of health-improving

2As we discuss below, there are good reasons to believe that these estimates are biased upwards and others to
suggest that they might be biased downwards so that the net bias is ambiguous.
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inputs that are consumed by the agent and Tt is a variable that captures the weather in period

t. We assume that the function s(ht, Tt) is increasing and concave in ht, and we define Tt such

that st is (weakly) decreasing in Tt. Finally, we assume that ∂st
∂ht

is increasing in Tt, such that the

marginal impact of health inputs on survival is greater when the weather shock Tt is extreme.

When alive, the agent derives utility in period t from consumption ct according to the intra-

temporal utility function, u(ct). Utility when dead is normalized to zero. Finally, we assume that

the agent discounts each future period with a constant discount factor β < 1. The agent therefore

obtains an expected value of lifetime utility given by

V = E

[
∞∑

t=0

βt

(
t∏

t′=0

s(ht′ , Tt′)

)
u(ct)

]
. (1)

Note that, here, the term
∏t

t′=0 s(ht′ , Tt′) is equal to the probability of the agent being alive in

period t.

There are two types of goods in this framework. Consumption goods (denoted by ct) are goods

that the agent values directly—they enhance the agent’s quality of life and are the sole argument

in the utility function, u(ct). Health input goods (denoted by ht) are valued only because they

improve the likelihood of survival in the current period and in future periods. We provide some

examples of health input goods, especially those that are important in our context, below.

The fact that the weather Tt affects that conditional probability of survival directly (i.e. ∂st
∂Tt

≥

0) allows for a direct effect of weather on mortality. The weather Tt is assumed to be out of the

agent’s control. Holding health inputs ht constant, high temperatures can cause death (decrease

survival chances st) directly. An extensive public health literature discusses the potential direct

effects of high temperatures on human health (see, for example, Basu and Samet [2002] for a

comprehensive review).3 Periods of excess temperature place additional stress on cardiovascular

and respiratory systems due to the demands of body temperature regulation. This stress is known

to impact on the elderly and the very young with particular severity, and can, in extreme cases,

lead to death Klineberg [2002]; Huynen, Martents, Schram, Weijenberg, and Kunst [2001]. An

alternative ’direct’ effect of extreme weather on death in India could include the possibility that

disease pathogens (for example, diarrhoeal diseases) thrive in hot and wet conditions, or that some

vectors of disease transmission (such as mosquitoes in the case of malaria) thrive in hot and wet

environments. We collapse all of these potential ’direct’ channels into the possibility that some

index of temperature Tt enters the function s(ht, Tt) directly (and negatively).

To allow for an ’income-based channel’ through which weather extremes can cause death, we

include the possibility that the agent’s income is a function of the weather: yt = y(Tt). This is

3Extremely cold temperatures can also affect human health adversely through cardiovascular stress due to
vasoconstriction and increased blood viscosity. Deschenes and Moretti [2009] find evidence for a moderate effect of
extreme cold days on mortality (especially among the elderly) in the United States, though this effect is concentrated
among days below 10

◦ F. Days in this temperature range are extremely rare in India.
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extremely likely in rural areas where incomes depend on agriculture directly or indirectly. For

simplicity, we assume that the weather variable Tt potentially affects both income and survival in

the same direction, such that y is decreasing in T . Because incomes are observable the weather-to-

income relationship is one that we are able to estimate. Naturally, we expect this relationship to be

minimal or even absent in urban areas, but this is testable, as we show below. In contrast, following

well-known effects in the agronomic literature, as well as the literature on expected effects of hotter

climates on Indian agriculture (e.g. Kumar, Kumar, Ashrit, Deshpande, and Hansen [2004] and

Guiteras [2009]), we expect a strong negative relationship between incomes in rural areas (i.e.

agricultural incomes) and temperatures; we document further evidence of this relationship below.

An income shortage caused by weather extremes could lead to death if this shortage forces the

agent to cut back on health input goods, ht. We take a broad view of these health input goods,

which the poor may struggle to afford even at the best of times, nevermind those periods when

weather extremes have caused income shortages. These could include traditional health goods such

as medicine or visits to a health center. Equally, they could include the subsistence component

of food consumption (that which increases the likelihood of survival but is not valued in u(c)

directly). Or, given our focus on temperature, an important ’health good’ might be the use of

air conditioning. More broadly, this ‘health good’ could also encompass any leisure or rest (i.e.

foregone labor, or income-earning opportunities) that the agent might decide to ‘purchase’ so as

to improve his health. This could include the decision to work indoors rather than outdoors when

it is hot, or to accept an inferior paying job so as to avoid working outside on a hot day.

Finally, we specify the timing through which uncertainty is resolved through time in this model.

At the beginning of a period (for example, period t = 0), the temperature in the current period

(e.g. T0) is drawn. The agent then makes his choices in the current period (i.e. c0 and h0) as a

function of the current temperature (i.e. c0 = c0(T0) and h0 = h0(T0)). After the agent’s decision

has been made, the agent’s survival shock arrives (i.e., having survived up to date 0, the agent

survives with probability s0 = s(h0, T0).) Finally, if the agent survives this death shock he enjoys

intra-period utility u(c0) and the next period begins. If the agent dies in period 0 then he enjoys

no utility from this period or subsequent periods (though the assumption of zero utility in death

is merely a normalization).

2.2 A Baseline Model Without Credit or Savings Constraints

We specify the agent’s budget constraint as follows. We assume that the price of the consumption

good ct is pc and that of the health input good ht is ph; this relative price governs intra-temporal

decisions. For simplicity we assume these prices are constant over time. We also assume, for

simplicity, that agents are able to borrow or save across periods at the interest rate r (which is

assumed to be constant, for simplicity) and that the agent has access to a complete and fair annuity

market (the only role of which is to simplify the presentation of the lifetime budget constraint by
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ruling out the possibility that the agent lives longer than expected and runs out of resources, or

that the agent dies early when in debt).

Under the above assumptions the agent’s inter-temporal budget constraint, starting from period

0, after T0 is known, can be written as:

s0[y(T0)− pcc0 − phh0] = E

[
∞∑

t=1

R−t

(
t∏

t′=0

st′

)
(pcct + phht − y(Tt))

]
, (2)

where R ≡ (1 + r). That is, if total expenditure in period 0 (i.e. pcc0 + phh0) exceeds income in

period 0, y(T0), then this must be funded by future surpluses.

An agent who maximizes lifetime utility, equation (1), subject to his lifetime budget constraint,

equation (2), from the perspective of period 0 after T0 is known will make choices that satisfy the

following necessary first-order conditions for optimization. First, his allocation of consumption

across time will satisfy a standard Euler equation:

u′(c0) =
βRE [s1u

′(c1)]

E[s1]
.

This result states that the marginal utility of consumption in period 0 will be equal to the expected

marginal utility of consumption in the next period, times the opportunity cost of consumption in

the next period. This is the standard Euler equation adjusted for the fact that the marginal utility

of consumption in period 1 (i.e. u′(c1)) will only bring utility if the agent survives (i.e.. if s1 = 1),

and adjusted also for the fact that opportunity cost of consumption in period 0 is also reduced by

the possibility of non-survival (i.e.. E[s1] < 1).

Second, the choice of the health input good in period 0, h0, will satisfy the following first-order

equation

∂s0

∂h

[
u(c0) + E

[
∞∑

t=1

βt

(
t∏

t′=1

st′

)
u(ct)

]]
= λphs0,

where λ is the marginal utility of lifetime income (in terms of the numeraire, the health input

good). In what follows we will find it useful to define E[V0] = u(c0) +E
[∑

∞

t=1 β
t
(∏t

t′=1 st′
)
u(ct)

]

as the expected utility of surviving the death shock (that is, of being alive) in period 0. If the agent

is alive in period 0 then he enjoys both consumption this period (i.e. u(c0)) and the possibility of

being alive in the future to enjoy utility from consumption then. This first-order equation for the

choice of h0 can therefore be written as

∂s0

∂h

E[V0]

λs0
= ph.

In this formulation, the term E[V0]
λs0

is the agent’s ‘value of a statistical life’ (VSL). This is the value

(in monetary units) of being alive at the start of date 0. The first-order condition therefore states
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that, at the optimal choice, the marginal benefit of spending more income on the health input

(which is given by the product of the effect that the health input has on survival, ∂s0
∂h

, and the

value of survival, the VSL) equals the marginal cost of spending income on the health input (given

simply by the price of the health input, ph).

Finally, by studying the agent’s expected choice of the health input in period 1, h1, one can

derive an equation for the change in health spending across periods 0 and 1 which is analogous to

the consumption Euler equation presented above. This health input Euler equation is:

∂s0(h0, T0)

∂h

V0

λs0
= βRE

[
∂s1
∂h

V1

s1λ

1 + ∂s1
∂h

W1

s1

]
. (3)

Here, V1 is the value of being alive at the start of period 1, and W1 is the agent’s net asset position

at the start of period 1. To gain intuition for this equation, imagine that the agent’s net asset

position at the start of period 1 is zero (i.e. W1 = 0), just as it was (by normalization) at the

start of period 0. In such a setting, this health input Euler equation is entirely analogous to the

consumption Euler equation introduced earlier: up to the dynamic adjustment factor βR (which

trades off the agent’s taste for impatience β with the returns to saving R), the agent tries to

equalize the expected marginal value of health spending across periods. Since the maginal value

of health spending is given by the product of the marginal effect of health saving on survival ( ∂s
∂h

)

and the value of survival (the VSL, V
sλ

), the result in equation (3) follows. More generally, W1 may

not equal zero. But this simply adjusts the above intuition for the fact that the agent does not

want to risk dying with assets unspent.

This last result, the health spending Euler equation in equation (3), suggests that—in this

benchmark model of frictionless borrowing and saving, and a perfect annuity market—we should

expect a great deal of smoothing, not only in health expenditure but also in the probability of

survival itself. For a potentially long lived agent, the value of life at date 0 should be close to that

at date 1. And since (by assumption) the marginal effect of health expenditure on survival ( ∂s
∂h

)

is strictly decreasing in h, equation (3) suggests that we should expect the agent to be trying to

smooth (again, up to the adjustment factor βR) expected health expenditures h as well as the

expected value of life.

2.3 Implications for Empirical Analysis of the Relationship Between

Weather and Death

Our empirical analysis below explores the impact of weather (temperature and rainfall extremes)

on the mortality rate. We do so across a number of different settings (urban vs. rural India,

India vs. the United States) and weather shocks (notably across those times of the year in which

we expect weather shocks to affect, or not affect, agricultural incomes) that differ, as we will

demonstrate empirically, in the extent to which weather shocks affect incomes. These comparisons
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shed light on how the exogenous impact of weather on incomes (summarized by the relation y(Tt)

in the model above) affects the extent to which weather affects death.

In the perfect markets model outlined above, how do we expect an income shock (as induced

by a weather shock) to affect the death rate? The answer lies in the standard permanent income

hypothesis which holds in this perfect markets model: an income shock in perod 0, caused by

a weather shock T0, only affects an agent’s contemporaneous survival chances s0 via the extent

to which the income shock reduces the agent’s total income (in present value terms) over the

remainder of his life. This is a simple implication of the strong smoothing implied by the Euler

equation (3) above. That is, if two identical agents, A and B, face the same weather shock T0,

and agent A has an income stream that depends on the weather (i.e. dy(T0)
dT0

< 0 for agent A)

but agent B does not, then we expect the impact of this shock on death to be stronger for agent

A than agent B. However, for shocks at annual frequencies, as in our empirical setting, it might

be expected that the impact of weather shocks on incomes of the magnitudes we estimate would

have too small an impact on (remaining) lifetime incomes to lead to substantial effects of weather

shocks on survival.

It is important to stress that, in this simple model in which income can be spent on either

consumption or health goods (and there is a linear budget constraint governing the choice between

the two consumption goods), a given weather shock harms the agent’s survival chances either

through income or through the survival function directly. In the former case, the budget constraint

is simply affected directly. In the latter case, the agent simply uses income to buy health goods so

as to offset the direct effect of weather on survival, which effectively reduces the budget remaining

for consumption goods. That is, whether a given weather shock leads to death via the direct health

channel or the indirect income channel is, at a fundamental level, irrelevant.

2.4 Implications of Credit Constraints

The Euler equation (3) derived above hinges on an agent’s abilty to move lifetime resources between

periods, in response to a shock to T0, so as to equalize expected marginal utility across time periods.

We now consider the possibility that agents face constraints on their ability to borrow. While the

general implications of liquidity constraints for consumption smoothing are a difficult problem (see,

e.g., Besley [1995], for a review in a developing country context), the intuition here is simple. If

the agent has insufficient wealth on hand in period 0 to buy the health goods required to equate

marginal survival odds in period 0 to those in period 1, rather than these odds equating as in

equation (3), these odds will satisfy the following inequality

∂s0(h0, T0)

∂h

V0

λs0
> βRE

[
∂s1
∂h

V1

s1λ

1 + ∂s1
∂h

W1

s1

]
.

10



This expression implies that, in the presence of borrowing constraints (and the need to borrow), the

marginal value of health spending on survival in period 0 will exceed the marginal value of health

spending on survival in future periods (such as period 1). This then implies that the impact of a

weather shock in period 0 on survival in period 0 will be greater than in a setting without credit

constraints. Again, the intuition comes from a comparison with the permanent income hypothesis

that prevails in the setting without borrowing (or other) constraints: without credit constraints,

a weather shock in period 0 is likely to be small relative to lifetime income and lifetime weather

exposure; but with binding credit constraints, lifetime income and lifetime weather exposure are

irrelevant if the agent can’t access those future resources in period 0. A simple implication of the

logic here is that any improvement in the financial system that relaxes borrowing constraints will

increase the likelihood of returning to a world in which the Euler equation holds with equality, as

in equation (3), and hence in which the permanent income hypothesis benchmark prevails, and

period 0 shock is unlikely to much affect period 0 outcomes such as consumption or survival.

2.5 The Implied Willingness to Pay for Avoiding Inclement Weather

A final implication of the above first-order conditions is that they can be used to characterize the

agent’s willingness to pay (WTP) to avoid a small worsening in the weather (dT0 > 0) in period 0.

We do so in the setting of section 2.1 above in which there are no liquidity constraints; adding such

constraints would only raise the agent’s WTP to avoid a weather shock since the unconstrained

WTP to mitigate a shock will always be weakly lower than the constrained WTP.

One way to derive the WTP is to imagine a transfer that varies as a function of the observed

weather T0 in period 0 and is designed to hold expected lifetime income V constant for any value

of T0. Denote this transfer by y∗(T0). It is then straightforward to show that this transfer scheme

will vary with T0 in the following manner:

dy∗(T0)

dT0

= −
dy(T0)

dT0

+
∂h0

∂T0

−
ds(h0, T0)

dT0

E

[
V0

s0λ

]
. (4)

This expression, which characterizes the agent’s willingness to pay to avoid a small worsening

in the weather dT0, is intuitive. WTP is the sum of three terms in this model. First, since weather

increases may adversely affect incomes directly (the ‘income-based channel’) the WTP first requires

compensation for any loss of income caused by worse weather (i.e. a payment of −dy(T0)
dT0

, which

we expect to be positive if bad weather leads to lower incomes). Second, since inclement weather

causes the agent to spend resources on health inputs that have no direct utility benefits, the WTP

requires the agent to be compensated for any change in expenditures on health inputs caused by

the worsening in the weather (i.e. a payment of ∂h0

∂T0

, which we expect to be positive if there is a

direct effect of weather extremes on survival chances that the agent is attempting to offset through

the purchase of the heath good). The final term in this WTP expression compensates the agent
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for the heightened risk of death caused by inclement weather. Such a compensation requires

a payment of −ds(h0,T0)
dT0

E

[
V0

s0λ

]
, which is the product of the total effect of weather extremes on

survival chances (i.e. ds(h0,T0)
dT0

) and the dollar value of survival in period 0, E
[

V0

s0λ

]
, often referred

to as the ‘value of a statistical life’. The fact that this expression depends on the total deriviative

of survival with respect to weather, ds(h0,T0)
dT0

, rather than the partial deriviative holding the health

input constant, is attractive from an empirical perspective.

It is important to note that all of the terms in the WTP expression in equation (4) are poten-

tially observable. Our empirical analysis below will aim to estimate both the the reduced-form

(or ‘total’) effect of weather extremes on death, i.e. ds(h0,T0)
dT0

, and the effect of weather extremes on

income, i.e. dy(T0)
dT0

. Armed with these two essential ingredients and an estimate of the value of a

statistical life in our setting (i.e. E

[
V0

s0λ

]
) we will therefore be able to estimate a lower bound on

the agent’s willingness to pay to avoid a small worsening of the weather, dT0. This estimate will

be a lower bound on the WTP because of our inability to observe the full vector of health inputs

that households are purchasing, and hence our inability to estimate ∂h0

∂T0

.

An important lesson from the WTP expression in equation (4) is that, as discussed briefly

above, in this model it is irrelevant whether the agent suffers a heightened risk of death due to

weather extremes because of a ‘direct’ effect of bad weather on death or an ‘income-based’ effect.

In either case, the agent has a well-defined willingness to pay to avoid inclement weather that is

given by our WTP expression. This fact informs our empirical approach which is centered on

estimating two important ingredients that are required to obtain bounds on the agent’s WTP, the

reduced-form effect of weather on death (i.e. ds(h0,T0)
dT0

) and the effect of weather on incomes (i.e.
dy(T0)
dT0

).

We conclude with a final word about policy in this environment. There are no market failures

in the baseline model above. There is therefore no efficiency-based role for a self-funded policy

here—a policy-maker facing the same constraints as the agent could do no better than the agent

is doing himself. But the WTP expression above does characterize the value that households

place on avoiding temperature extremes, which an external funder, such as a foreign donor, might

wish to use to compare the merits of competing policy proposals. We believe that our implied

empirical WTP estimates, which are themselves a lower bound due to our ignorance about the

magnitude of ∂h0

∂T0

and our simplification to a setting without credit constraints, are provocative

from this perspective.

3 Background and Data

To implement the analysis in this paper, we have collected the most detailed and comprehensive

district-level data available from India on the variables that the conceptual framework in Sec-

tion 2 above suggests are important. These variables include demographic variables (population,
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mortality and births) and variables that capture key features of India’s urban and rural economies

(output, prices and wages). We then study the relationship between these data and high-frequency

daily data on historical weather that we have assembled. In this section we describe these data,

their summary statistics, and the essential features of the background economy they describe.

Throughout this paper we draw heavily on the implications of the differential weather-death

relationship in urban and rural areas. We therefore begin with a short discussion of the essential

differences between these regions. Despite the dramatic extent to which the world has urbanized in

the last sixty years, the depth of urbanization in India has been relatively slow: even in 2001, 72.2

percent of Indians lived in rural areas. The overriding distinction between economic life in rural

and urban India is the source of residents’ incomes. 76 % of rural citizens belong to households that

draw their primary incomes from employment in the agricultural sector, while only 7 % of those

in urban areas do so. Another distinction between rural and urban areas lies in their consumption

of food—that is, in their exposure to fluctuations in the prices of foodstuffs. Deaton and Dreze

[2009] draw on consumption surveys to report that, in 2001, 58 % of the average rural residents’

budget was spent on food, while only 45 % of the average urban budget was devoted to food.

Naturally, these consumption differences may represent differences in the level of household per

capita incomes between rural and urban areas. Urban households are, on average, richer than rural

households: in 2001 urban residents were 69 % richer on average than rural residents, according

to Deaton and Dreze [2009].

3.1 Mortality

The cornerstone of the analysis in this paper is district mortality data taken from the Vital Statistics

of India (VSI) publications for 1957-2000, which were digitized for this project. The VSI data

represent the universe of registered deaths in each year and registration was compulsory in India

throughout our sample period. This source contains the most detailed possible panel of district-

level mortality for all Indian citizens.

Death tallies in the VSI are presented for infants (deaths under the age of one) and for all

others (deaths over the age of one), by rural and urban areas separately.4 From this information

we construct two measures of mortality: an infant mortality rate, defined as the number of deaths

under the age of one per 1000 live births; and an ‘all ages’ mortality rate, defined as the total

number of deaths over the age of one normalized by the population in 1000s.

Table 1 (which contains all of the summary statistics for data used in this paper) summarizes

the VSI data from the 1957-2000 period that we use in this paper, which comprise 315 districts

4The rural/urban assignment is based on the following criteria, used throughout official Indian statistics: urban
areas comprise “(a) all places with a Municipality, Corporation or Cantonment or Notified Town Area; and (b) all
other places which satisfied the following criteria: (i) a minimum population of 5,000, (ii) at least 75% of the male
working population was non-agricultural, and (iii) a density of population of at least 400 per sq. Km. (i.e. 1000
per sq. Mile).”
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spanning 15 of India’s largest states (and account for over 85 % of India’s population).5 The

table reveals that measured mortality rates are high throughout this period. For example, the

average infant mortality rate is 40.5 per 1,000 live births. Geographically, average infant mortality

rates range from 17.7 per 1,000 in Kerala to 71.3 per 1,000 in Orissa, revealing the substantial

heterogeneity. As a basis of comparison, the mean US infant mortality rate over these years was

roughly 12 per 1,000. The Indian overall mortality rate was 6.6 per 1,000. It is important to

stress that these mortality rates are almost surely underestimates of the extent of mortality in

India. Despite compulsory registration of births and deaths, many areas of the country suffer from

significant under-reporting.6

Table 1 also documents the time variation in the two mortality rates. There is a remarkable

decline in both mortality rates in both rural and urban regions. For example, the overall mortality

rate declines from roughly 12 in 1957 to about 4 in rural areas and 6 in urban areas by 2000. The

decline in the infant mortality rate is also impressive, going from about 100 per 1,000 in 1957 to

roughly 13.5 per 1,000 in 2000. In Section 4 below, we describe our strategy to avoid confounding

these trends in mortality rates with any time trends in temperatures.

3.2 Weather

A key finding from Deschenes and Greenstone [2011] is that a careful analysis of the relationship

between mortality and temperature requires daily temperature data. This is because the rela-

tionship between mortality and temperature is highly nonlinear and the nonlinearities would be

missed with annual or even monthly temperature averages. This message is echoed in the agronomic

and agricultural economics literatures (as emphasized, for example, by Deschenes and Greenstone

[2007] and Schlenker and Roberts [2008]).

Although India has a system of thousands of weather stations with daily readings dating back

to the 19th century, the geographic coverage of stations that report publicly available temperature

readings is poor (and surprisingly the public availability of data from these stations drops precip-

itously after 1970). Further, there are many missing values in the publicly available series so the

application of a selection rule that requires observations from 365 days out of the year would yield

a database with very few observations.

As a solution, we follow Guiteras [2009] and use data from a gridded daily dataset that uses

non-public data and sophisticated climate models to construct daily temperature and precipitation

5These states are (in 1961 borders and names): Andhra Pradesh, Bihar, Gujarat, Himachal Pradesh, Jammu
and Kashmir, Kerala, Madhya Pradesh, Madras, Maharashtra, Mysore, Orissa, Punjab, Rajasthan, Uttar Pradesh,
and West Bengal. These are the states with a consistent time series of observations in the VSI data. The results in
this paper are largely insensitive to the inclusion of all observations in the VSI data.

6According to the National Commission on Population of India, only 55 % of the births and 46 % of the
deaths were being registered in 2000. These estimates were obtained from India’s Sample Registration System,
which administers an annual survey of vital events to a nationally representative sample of households. The data
published by the SRS, however, are only available at the state level.
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records for 1◦ (latitude) × 1◦ (longitude) grid points (excluding ocean sites). This data set,

called NCC (NCEP/NCAR Corrected by CRU), is produced by the Climactic Research Unit, the

National Center for Environmental Prediction / National Center for Atmospheric Research and the

Laboratoire de Météorologie Dynamique, CNRS. These data provide a complete record for daily

average temperatures and total precipitation for the period 1950-2000. We match these gridpoints

to each of the districts in our sample by taking weighted averages of the daily mean temperature

and total precipitation variables for all grid points within 100 KM of each district’s geographic

center. The weights are the inverse of the squared distance from the district center.7

To capture the distribution of daily temperature variation within a year, we use two different

variables. The first of these temperature variables assigns each district’s daily mean temperature

realization to one of eleven temperature categories—as already seen in Figure 1. These categories

are defined to include daily mean temperature less than 70◦ F, greater than 97◦ F, and the thirteen

3◦ F-wide bins in between. The 365 daily weather realizations within a year are then distributed

over these eleven bins. This binning of the data preserves the daily variation in temperatures,

which is an improvement over previous research on the relationship between weather and death

that obscures much of the variation in temperature.

Figure 2 illustrates the average variation in daily temperature readings across the eleven tem-

perature categories or bins over the 1957-2000 period. The height of each bar corresponds to the

mean number of days that the average person in the vital statistics data (described below) expe-

riences in each bin; this is calculated as the weighted average across district-by-year realizations,

where the district-by-year’s total population is the weight. In Figure 2 we also plot the average

temperature distribution for the 2070-2099 period predicted by a leading climatological model of

climate change (described further below). As can be seen from this polt the temperature distri-

bution in India will move sharply to the right with there being many more hot days at the end of

this century.

As a second approach to capturing the influence of temperature, we draw on a stark non-

linearity in the relationship between daily temperatures and both human and plant physiology that

is well known in the public health and agronomy literatures: temperatures above (approximately)

90◦ F are particularly severe. We therefore construct a measure of the cumulative number of

degrees-times-days that exceed 90◦ F in a district and year. We also experiment with 70◦ F

and 80◦ F cutoffs. This ‘degree-days’ measure has the advantage of collapsing a year’s 365 daily

temperature readings down to one single index, while still doing some justice to what is known

about the non-linear effects of temperature. Table 1 reports on summary statistics of this measure.

While the primary focus of our study is the effect of high temperatures on mortality, we use

7On average, there are 1.9 grid points within a 100 km radius circles. The subsequent results are insensitive
to taking weighted averages across grid points across distances longer than 100 km and using alternative weights
(e.g., the distance, rather than the squared distance). After the inverse distance weighting procedure, 339 out of a
possible 342 districts have a complete weather data record. The three districts that are dropped in this procedure
are Alleppey (Kerala), Laccadive, Minicoy, and Amindivi Islands, and the Nicobar and Andaman Islands.

15



data on rainfall to control for this potential confounding variable (to the extent that temperature

and rainfall are correlated). Table 1 reports annual precipitation totals. However, the striking

feature of rainfall in India is its intra-annual distribution: in an average location, over 95 percent

of annual rainfall arrives after the arrival of the southwest (summer) monsoon, a stark arrival of

rain on the southern tip of the subcontinent around June 1st which then moves slowly northwards

such that the northern-most region of India experiences the arrival of the monsoon by the start

of July—see, for example, Wang [2006]. Naturally this stark arrival of rainfall after a period of

dryness triggers the start of the agricultural season in India. We exploit this feature of the timing

in our analysis below.

3.3 Data on Economic Outcomes in Rural India

It is natural to expect that the weather plays an important role in the agricultural economy in

India. In turn, the agricultural economy may play an important role in the health of rural citizens

who draw their incomes from agriculture. To shed light on these relationships we draw on the best

available district-level agricultural data in India. The data on agricultural outputs, prices, wages,

and employment come from the ‘India Agriculture and Climate Data Set’, which was prepared

by the World Bank.8 This file contains detailed district-level data from the Indian Ministry of

Agriculture and other official sources from 1956 to 1987. From this source we utilize three distinct

variables on the agricultural economy: yields, prices, and wages.

3.3.1 Agricultural Yields

We construct a measure of annual, district-level yields by aggregating over the output of each of

the 27 crops covered in the World Bank dataset (these crops accounted for over 95 percent of

agricultural output in 1986). To do this we first create a measure of real agricultural output for

each year (using the price index discussed below) and then divide this by the total amount of

cultivated area in the district-year. Table 1 reports on the resulting yield measure for the 271

districts contained in the World Bank dataset, over the period from 1956 to 1987. All of the major

agricultural states are included in the database, with the exceptions of Kerala and Assam.

3.3.2 Agricultural Prices

Because rural households spend so much of their budgets on food, food prices are an important

determinant of rural welfare in India. We construct an agricultural price index for each district

and year which attempts to provide a simple proxy for the real cost of purchasing food in each

district-year relative to a base year. Our simple price index weights each crop’s price (across the

27 crops in the World Bank sample) by the average value of district output of that crop over the

8The lead authors are Apurva Sanghi, K.S. Kavi Kumar, and James W. McKinsey, Jr.
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period.9 Table 1 reports on the level of this price index in rural India. (The price data used in

the World Bank source are ‘farm harvest prices’, so we prefer to interpret these as rural prices

rather than urban prices.) These figures and their accompanying standard deviations show that

prices are not as variable over space and time as the yield figures in Table 1, potentially reflecting

a degree of market integration across India’s districts (so that a market’s price is determined by

supply conditions both locally and further afield). We explore further the extent of this market

integration below.

3.3.3 Real Agricultural Wages

A second important metric of rural incomes (in addition to agricultural productivity, discussed

above) is the daily wage rate earned by agricultural laborers. The World Bank dataset contains

information on daily wages, as collected by government surveys of randomly chosen villages in

each district and year. All figures are given in nominal wages per day, and are then converted

into equivalent daily rate to reflect the (low) degree of variation in the number of hours worked

per day across the sample villages. We divide the reported, nominal wage rate by the agricultural

price index described above to construct an estimate of the real rural agricultural wage in each

district-year.10 As can be seen in Table 1, the level of real wages is low throughout the period—

never rising above 33.96 Rupees (base year 2000), or approximately 2 US dollars (base year 2000)

per day in PPP terms.

3.4 Data on Economic Outcomes in Urban India

As emphasized in Section 2, an important channel through which weather variation can reduce

welfare and lead to death is through households’ incomes. While it is natural to expect strong

effects of temperature extremes on rural, agricultural incomes, we also investigate the extent to

which economic conditions in urban areas react to temperature fluctuations. To this end we have

collected the best available data on urban economic conditions, and describe the sources of that

data here. It is important to stress at the outset that, perhaps because of the over-riding current

and historical importance of agriculture for economic welfare in India, the statistics on India’s

urban economy are not as detailed as those on India’s rural, agricultural economy. All of the

sources listed below report data on urban outcomes at the state level, whereas all of the rural

equivalents introduced above were available at the district level.

9Annual, district-level consumption data, which would be required to construct a more appropriate consumption-
based price index, are not available in India.

10A better real wage measure would of course also incorporate price information on non-agricultural items in the
rural consumption basket. Unfortunately, the price and quantity information that would be required to do this are
unavailable annually at the district level in India.
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3.4.1 Manufacturing Productivity

India’s manufacturing sector (especially its ‘registered’ or formal manufacturing sector) is almost

entirely located in urban areas. For this reason we use a measure of state-level registered manu-

facturing productivity (real output per worker) as one measure of the productivity of the urban

area of each state in each year. We draw this data from Besley and Burgess [2004], who collected

the data from publications produced by India’s Annual Survey of Industries.

3.4.2 Urban Consumer Price Index

Every year India’s statistical agencies produce two official consumer price indices, one intended to

be relevant for agricultural workers and one intended to be relevant for manufacturing workers.

These are published by the Labour Bureau. The latter index is collected (by the NSSO) from

urban locations, and is based on weights drawn from NSS surveys of manufacturing workers. We

therefore follow standard practice and use on the manufacturing workers’ CPI as a CPI that reflects

urban prices. Data on this index is taken from Besley and Burgess [2004], who collected the data

from the annual Indian Labour Yearbook publication.

3.4.3 Real Manufacturing Wages

The final measure of incomes in urban areas that we exploit comes from manufacturing wage

data. To construct this variable we first use data on nominal (registered) manufacturing wages, as

surveyed by the Annual Survey of Industries and published in the annual Indian Labour Yearbook,

which was collected by Besley and Burgess [2004]. We then divide nominal manufacturing wages

by the urban CPI variable introduced above to create a measure of real manufacturing wages.

4 Method

This section describes the econometric methods used to establish relationships between a series

of outcomes and temperature realizations. Several of the relationships appear non-linear and we

have chosen specifications that allow for flexibility in the response function while retaining some

parsimony. Our first approach to estimating these relationships was introduced briefly in the

Introduction, and results based on it were presented in Figure 1, but we provide details here. The

estimating equation uses a very flexible specification to model the effects of daily temperature on

outcomes:

Ydt =

11∑

j=1

θjTMEANdtj +
∑

k

δk1 {RAINdtin tercile k}

+ αd + γt + λ1
rt+ λ2

rt
2 + εdt, (5)
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where Ydt is the outcome variable (e.g., ln mortality rate or ln agricultural output) in district d in

year t. The r subscript refers to a ‘climatic region’; India has five climatic regions or groupings

of states that are judged by India’s Meteorological Department to have similar climates. The last

term in the equation is a stochastic error term, εdt.

The key variables of interest are those that capture the distribution of daily temperatures in

district d within year t. The variable TMEANdtj denotes the number of days in district d and

year t on which the daily mean temperature fell in the jth of the eleven bins that correspond

to days with mean temperatures <70◦ F, ≥ 97◦ F, and the nine 3◦ degree-wide bins in between.

It is noteworthy that the daily mean is calculated as the simple average of the daily minimum

and daily maximum, so, for example, a day in the 89◦ F -91◦ F bin is a quite hot day. We

estimate separate coefficients θj for each of these temperature bins. However because the number

of days in a standardized year always sums to 365, we use the bin for temperatures between 70◦ F

and 72◦ F as a reference category whose coefficient is therefore normalized to zero. Importantly,

across our outcome variables we cannot reject the null hypothesis that the impact of days with a

mean temperature <70◦ F have zero effect on the outcome. Further, there are not enough high

temperature days to to obtain meaningful estimates for separate temperature bins ≥ 97◦ F.

This approach makes three assumptions about the effect of a day’s mortality impact on the

outcome variable. First, this approach assumes that the impact is governed by the daily mean

alone; since daily data on the intra-day (‘diurnal’) variation of temperatures in India over this

time period is unavailable, this assumption is unavoidable. Second, the approach assumes that

the impact of a day’s mean temperature on the annual mortality rate is constant within 3◦ F

degree intervals; our decision to estimate separate coefficients θj on each of eleven temperature

bin coefficients represents an effort to allow the data, rather than parametric assumptions, to

determine the mortality-temperature relationship, while also obtaining estimates that are precise

enough that they have empirical content. This degree of flexibility and freedom from parametric

assumptions is only feasible because of the use of district-level data spanning 44 years. Third, by

using as a regressor the number of days in each bin, we assume that the sequence of relatively hot

and cold days is irrelevant for how hot days affect the annual outcome variable. This is a testable

assumption, for which we find support.

The second set of variables on the right-hand side of equation (5) aims to capture variation in

precipitation (essentially rainfall, given our sample restriction to non-Himalayan India). Given that

our primary focus is on the effects of temperature on death, the coefficients on rainfall regressors are

of secondary importance. However, because it is possible that temperature variation is correlated

with rainfall variation, the inclusion of these rainfall variables is important. We model rainfall

in a manner that is fundamentally different from our approach to modeling temperature because

of one key difference between temperature and rainfall: rainfall is far more able to be stored (in

the soil, in tanks and irrigation systems, and in stagnant water that might breed disease) than is

temperature. Given this distinction, we model the effect of rainfall as the impact of sums over
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daily accumulations. Specifically, we calculate whether the total amount of rainfall in year t in

district d was in the upper, middle or lower tercile of annual rainfall amounts in district d over

all years in our sample; these are the regressors 1 {RAINdtin tercile k}. We estimate a separate

coefficient on each of the three tercile regressors, though we treat the middle tercile regressor as

the omitted reference category.

The specification in equation (5) also includes a full set of district fixed effects, αd, which absorb

all unobserved district-specific time invariant determinants of the outcomes. So, for example,

permanent differences in the supply of medical facilities will not confound the weather variables in

equations for the ln mortality rate. The equation also includes unrestricted year effects, γt. These

fixed effects control for time-varying differences in the dependent variable that are common across

districts (e.g., changes in health related to the 1991 economic reforms). Since shocks or time-

varying factors that affect health may not be common across districts, we emphasize specifications

that include separate quadratic time trends for each region.

We use the first approach for graphical analyses, like Figure 1, throughout the paper but ten

coefficients of interest is too much information for the tables. Consequently, our second approach

to modeling the temperature-death relationship estimates fewer parameters while still doing some

justice to the non-linear nature of the relationships. This second approach, which we refer to as

the ‘single-index’ approach, estimates the parameters in:

Ydt = βCDD80dt +
3∑

k=1

δk1 {RAINdtin tercile k}+ αd + γt + λ1
rt+ λ2

rt
2 + εdt, (6)

where the variable CDD80dt is the number of cumulative degree-days in district d and year t

that exceeded 80◦ F.11 This is a particular restriction on the flexible approach in equation (5)—

where all of the temperature bin coefficients θj below 80◦ F are restricted to be zero and the three

coefficients above 80◦ F are restricted to be linearly increasing in their average temperatures—for

which we find some support below. This approach to modeling temperature has the advantage of

estimating only one temperature coefficient rather than 11 coefficients, while still capturing the

essential features of non-linearity evident from the 11 coefficient estimates in Figure 1. We will

also report on specifications that use CDD70dt and CDD90dt to model temperature.

Our assumptions in pursuing this simplification are that: (i) on days during which the mean

temperature is below 80◦ F temperature is irrelevant for determining the outcome variable (e.g.

mortality) Ydt; and (ii), the effect of days whose mean temperatures exceed 80◦ F is linearly

increasing (at the rate β) in the mean daily temperature. This is broadly in line with a large

public health and agronomy literature that uses the cumulative degree-day approach. Another

advantage of this single-index approach is that by estimating one coefficient rather than eleven we

11For example, if a given district-year had only two days over 80
◦ F, one at 82

◦ F and the other at 84
◦ C, its

value of CDD80dt would be 6 (i.e. 2+4).
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have more statistical power for teasing out the heterogeneous effects of temperature in order to

learn more about the relationships between temperature and the outcomes.

The validity of this paper’s empirical exercise rests crucially on the assumption that the esti-

mation of equations (5) and (6) will produce unbiased estimates of the θj , β and δk parameters.

These parameters are identified from district-specific deviations in weather about the district av-

erages that remain after adjustment for the year fixed effects and region-specific quadratic time

trends. Due to the randomness and unpredictability of weather fluctuations, it seems reasonable

to presume that this variation is orthogonal to unobserved determinants of the outcomes.

There are two further points about estimating equations (5) and (6) that bear noting. First, it is

likely that the error terms are correlated within districts over time. Consequently, the paper reports

standard errors that allow for heteroskedasticity of an unspecified form and that are clustered at

the district level. Second, we fit weighted versions of equations (5) and (6), where the weight is the

square root of the population in the district for two complementary reasons.12 First, the estimates

of mortality rates from large population districts are more precise, so this weighting corrects for

heteroskedasticity associated with these differences in precision. Second, the results reveal the

impact on the average person (or, in the case of agricultural specificatio, the average plot of land)

rather than on the average district, which we believe to be more meaningful.

Finally, guided by our theoretical model, we also implement a variant of our second approach

where we interact CDD80dt with a bank branch expansion variable banksdt in models for ln

mortality rates. The banksdt variable measures the number of commercial bank branches opened

in a rural, unbanked areas in a given district and year. During our sample period commercial

banks were forced to open more branches in rural areas of India. We use the identification strategy

of Burgess and Pande [2005] to instrument both banksdt and the interaction between banksdt and

CDD80dt. The coefficient on the interaction between banksdt and CDD80dt measures whether

bank branch expansions alter the impact of hot weather on death. The intuition is that access to

a bank may increase people’s opportunities to smooth survival across weather shocks by moving

consumption across periods through drawing down deposits or taking out loans.

5 Results

This section presents the main results of the paper that are guided by the conceptual framework

in Section 2. We first demonstrate that high temperature days reduce incomes (measured by

agricultural yields, wages, and prices) in rural areas, but not urban ones, and this is largely

due to hot days during the growing season, rather than the growing season. This allows us to

establish whether or not the income effect of hot weather is more pronounced for rural versus

12When estimating relationships in which the outcome variable concerns agricultural income, we weight by the
cultivated area of the district-year since the fundamental sampling unit in the data used to construct these outcome
variables is a parcel of land.
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urban populations and for growing season versus non-growing season weather. We then move to

the central results of the paper where we examine whether hot weather has an unequal effect on

rural and urban populations. Both populations within a district experience the same weather

fluctuations so, in effect, we are testing whether the same temperature shock affects the two

populations differently. Pairing income effects with mortality effects allows us to explore empirically

a central implication of Section 2 that, ceteris paribus, mortality effects on rural populations should

be larger than mortality effects on urban populations if hot weather has a larger income effect on

rural populations. We then turn further evaluate the extent to which banks appear to mitigate

the effect of hot weather on mortality, as one would expect if banks facilitate the smoothing of

survival chances. Finally, using coffecients from our 1957-2000 analysis of the weather-mortality

relationship and predicted changes in district distributions of temperature and precipitation we

analyse how climate change is likely to affect mortality and life expectancy in the future in India.

5.1 Weather and Income

5.1.1 Rural and Urban Incomes

In terms of economic structure, urban and rural India look very different. In employment terms,

the rural areas of India are dominated by agriculture whilst urban areas are dominated by services

and manufacturing. As we have seperate observations of mortality for rural and urban populations

within the same district, we can test whether the weather-income relationship differs for these two

populations. An agricultural income channel relating weather to death in rural India would begin

with an effect of weather shocks on agricultural productivity.

Figure 3 plots the 11 temperature bin coefficients when agricultural yields are regressed on

the 11 temperature bin regressors, as well as our rainfall controls, district and year fixed effects,

and quadratic region-specific polynomials in time, from the estimation of equation (5).13 Figure 3

indicates that daily temperatures above 80◦ F harm annual agricultural yields and the damage is

greater at higher temperatures, both of which are consistent with experimental evidence in agron-

omy (as discussed in, e.g., Guiteras [2009]). The magnitude of the estimated effect of hot weather

on agricultural productivity is large—the coefficient estimates for days with mean temperatures

exceeding 85◦ F implies that every single day in this category (relative to a day in the 70◦ - 72◦

F reference category) reduces agricultural yields by about 0.5% or more. Consequently, a year

13One small difference here, when compared to the mortality regressions below, is our adjustment of the timing
of the weather data when relating it to agricultural outcomes (that is, to yields in this section as well as to prices
and wages in following sections). The agricultural yield data used here are based on measures of the total amount
of output produced during the agricultural year (defined as running from June 1st to May 31st). If the weather in
‘year t’ is to matter for agricultural output in ‘year t’, it is important to define ‘year t’ in the same way across both
the weather and agricultural output data. In the agricultural regressions in this and following sections, we therefore
re-label the years in the weather data so that weather on dates from January 1st to May 31st are lagged by a year.
Put another way, when estimating equations (5) and (6) on agricultural outcomes here, the year t is defined as the
365 days beginning on June 1st of any given calendar year.
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with 10 additional days above 85◦, and drawn from the reference category, would have a roughly

5% decline in agricultural production. Finally, it is noteworthy that the point estimates on the

79 − 81◦ temperature bin and above would all be judged, even taken individually, as statistically

significant at the 5% level or better.

Figure 4 repeats this exercise for our measure of real agricultural wages, which is measured

as the average district-level wage of agricultural day laborers (which is calculated only among

those working) deflated by our district-specific agricultural price index (as described in Section 3).

It would would be natural to expect that when agricultural productivity falls in years with hot

days, as seen in Figure 3, so too do wages in the agricultural sector reflecting their lower marginal

product. Along these lines, we see pattern in Figure 4 that is similar to that in Figure 3, with

real wages for agricultural laborers falling for temperatures above 82◦ - 84◦F; each day above 85◦,

relative to a day in the 70◦ - 72◦ F range, leads to a 0.25 to 0.5% decline in the annual wage. This

finding is particularly significant as agricultural laborers constitute one of the largest and poorest

groups in India (as described in, e.g., Deaton and Dreze [2009]) and one of the most affected by

weather shocks.14 Interestingly, the decline in real wages largely reflects a decline in nominal wages

as the evidently high degree of market integration for agricultural products in India limits price

movements in response to these district-specific temperature shocks.15

Table 2 provide details from estimating the relationship between weather and income in the

more parsimonious manner specified in equation (6). Panels A, B, and C report on separate

versions where the cumulative degree-days (CDD) variable uses a base of 90◦, 80◦, and 70◦ F,

respectively. The table reports the coefficient on the relevant CDD variable, its standard error (in

parentheses), and the effect of a 1 standard deviation increase in the CDD variable on ln annual

agricultural yield (in brackets). We will use a goodness of fit measure to guide our choice among

the three possible CDD variables for the subsequent analysis below; specifically, we will emphasize

the functional form that produces the highest t-statistic (i.e., the square root of the F statistic).

In column (1), the dependent variable is the log of agriculture yields, as in Figure 2. There

is a statistically significant relationship between yields in all three panels, however it is evident

that the CDD80 and CDD70 variables fit the data best (as is also apparent visually in Figure

3). Both of these specifications indicate that a year with a 1 standard deviation increase in high

temperature days (as measured by the CDD80 and CDD70) variables leads to a roughly 13%

decline in agricultural yields. The results in column (2) find a similar relationship between log

real wages and high temperature days. Again, the CDD70 and CDD80 variables fit the data best

and here those regressions suggest that a 1 standard deviation increase in high temperature days

14According to the 2001 Indian census about 1 in 4 workers in India are agricultural laborers.
15Seperate price-temperature response plots obtained from the estimation of equation (5) reveals a similar, but

reversed pattern of effects because adverse production raises the agricultural price index. Notably the coefficients
on the highest temperature bin regressors are smaller in absolute value than those in Figure 3 for agricultural
yields. (These coefficients are still statistically significant, however, at the 5 percent level.) One interpretation of
this finding is that (albeit incomplete) markets integration across Indian districts prevents local production shocks
from strongly affecting local prices. We omit these results for brevity but they are available upon request.
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is associated with a roughly 10% decrease in real daily agricultural wages.

Overall, we conclude that during the 1956 - 1987 period, high temperature days depress agri-

cultural incomes whether they are measured with yields or real wages. Further, we will emphasize

the CDD80 variable for these outcomes in the subsequent analysis as it appears to fit the data at

least as well as the CDD70 variable and better than the CDD90 one.

Columns (3) and (4) explore the relationship between temperature shocks and measures of

urban income, manufacturing productivity (output per worker in the registered manufacturing

sector) and wages (nominal earnings per worker in the registered manufacturing sectors). While

a large body of agronomic work documents how plants suffer at high temperatures, this enquiry

into the weather-urban income relationship is more speculative because it cannot draw on a rich

theoretical and experimental literature.16 An important caveat regarding these results is that,

as explained in Section 3, we have been unable to obtain information on India’s urban economy

at the district-level; instead, all of the data used in columns (3) and (4) is available only at the

state-level so the state-by-year is the unit of observation. This means that all of these estimates

will be considerably less precise, given the smaller sample size.17 While in many ways these are

not perfect analogues of the rural, agricultural income variables in columns (1) and (2), we believe

that they are reasonable proxies for urban incomes.

The regressions fail to reveal a meaningful relationship between high temperatures and urban

incomes. None of the temperature coefficients would be judged to be statistically significant by

conventional criteria and the magnitudes are relatively small. From the available data, we conclude

that there is no strong temperature-income relationship in urban India, which stands in stark

contrast to the column (1) and (2) results that found that incomes are temperature dependent in

rural areas.

5.1.2 Growing versus Non-Growing Season Temperatures

Our analysis so far has documented a strong effect of a given year’s temperature on rural incomes.

But it is natural to expect the effect of weather on mortality to differ according to the seasons.

As many rural citizens depend on agriculture, either as laborers or cultivators, weather shocks

in the growing season might depress productivity employment more in the growing season than

outside of it. In particular, the agronomy literature suggests that high temperatures can retard

plant development, which primarily occurs during the growing season. In addition, there is a

nascent literature indicating that individuals are less productive in high temperatures and for

health reasons may even choose not to work. In the case of the non-growing season, the effect on

individual productivity remains and it is possible that high temperatures affect agricultural yields

(e.g., by reducing groundwater or soil moisture) although this effect is less direct than during the

16See Olken, Dell and Jones (2012).
17For the purposes of the results in Table 2, we aggregate our district-level weather data to the state-level by

using weights proportional to size of each district’s urban population.
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growing season.

To empirically evaluate the separate effects of growning and non-growing season temperatures,

we take a parsimonious approach to determining the ‘growing’ and ‘non-growing’ seasons of Indian

agriculture. The agricultural calendar in India is driven by the arrival of the southwest monsoon

rains, which marks the beginning of the growing season. After its arrival, the vast majority

of an average district’s annual rainfall arrives. The southwest monsoon begins to arrive on the

subcontinent at its southern tip (roughly the state of Kerala) on approximately June 1st of every

year. After this first arrival the onset of the monsoon moves slowly northwards throughout India,

reaching its northern limits by, on average, the start of July. Because of this slow onset, the arrival

of the monsoon, and therefore the start of the main agricultural season, varies throughout the

country.

In order to partition a given year’s weather data in any given district into that in the growing

and non-growing season, we have obtained data on each district’s ‘typical’ date of monsoon arrival

from the Indian Meteorological Department. Within a calendar year, we define all dates after a

given district’s typical date of monsoon arrival as the growing season. To define the non-growing

season we take all dates that are within the three-month (that is, 91-day) window prior to each

district’s typical date of monsoon arrival.18 This three month period tends to be the hottest part

of the year.

Figure 5 reports results from the estimation of a version of equation (5) that allows the eleven

temperature bins to enter separately for the growing and non-growing season portions of the year.

There are two key findings. First, high temperature days during the growing season substantially

retard agricultural yields. For example, a growing season day where the temperature exceeds 85◦F,

relative to a day in the 70◦ - 72◦ F reference range, reduces annual agricultural yields by roughly

0.7% to 1.0%. Further, all of the coefficients associated with temperatures greater than 75◦F are

negative and statistically different from zero at the 5% level or better. Second, temperatures in the

non-growing season, even days above 90◦F, do not have a statistically or economically meaningful

impact on agricultural yields. Indeed, none of the coefficients would be judged to differ from zero

at conventional significance levels.

Table 3 is structured similarly to Table 2 and provides a more parsimonious summary of

the relationship between growing and non-growing season temperatures and incomes, as well as

reporting on the parameters associated with the rainfall indicators. Throughout the table, we use

CDD80 based on the results in Table 2. In column (1) the strongly negative relationship between

high temperature days and agricultural yields is immediately evident; a 1 standard deviation

increase in CDD80 leads to a 14.7% decline in yields. As is apparent in the figure, high temperature

days in the non-growing season have little impact on yields and the null that the growing and

18The use of three months rather than the entire year matters little because there are so few hot days in the first
months of the year. But we pursue this approach because in many regions the entire growing season, typically two
harvests, the kharif and then the rabi, can be as long as nine months, so the first few months of a calendar year
are typically the tail months of the previous year’s agricultural season.
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non-growing season coefficients for CDD80 are equal is easily rejected. There is also a strong

relationship between rainfall shortfalls and agricultural yields, with a year in the lowest terciles

leading to a roughly 8% decline in yields. This squares with the sense that damaging scenarios

concerning rainfall for Indian agriculture involve a surfeit rather than a surplus of rainfall.

The entries in column (2) indicate that high temperature days reduce real agricultural wages

among the employed in rural areas during the growing season with a 1 standard deviation increase

in CDD80 implying a 8.6% decline in the wage rate among the employed. There is a modest

negative effect of hot days during the non-growing season that is statistically distinguishable from

the growing season parameter. A rainfall shortfall has a much weaker relationship with the real

wage than with yields.19

Columns (3) and (4) report on manufacturing productivity and wages in urban areas. There

is little evidence that growing season temperatures, non-growing season temperatures, or rainfall

are an important contributor to incomes. The bottom line appears to be that weather shocks,

especially hot temperatures during the growing season, substantially affect rural incomes but not

urban ones.

5.2 Weather and Death

Figure 1 in the Introduction revealed a strong relationship between hot temperature days and

mortality rates for the full (rural plus urban) Indian population. This subsection unpacks this

relationship by exploring whether it differs in rural versus urban areas of each Indian district.

This cut of the data will shed some light on whether the weather-death relationship is different for

populations that are more or less dependent on weather contingent forms of economic production.

The high frequency of the weather data also allows us to examine if weather during the growing

season affects mortality differently from weather in the non-growing season and how these results

correspond with the analogous income results.

5.2.1 Urban versus Rural

Figure 6 begins the analysis by plotting the estimated response functions between log annual mor-

tality rate and temperature exposure from fitting equation (5), separately for urban and rural

populations. The mortality rate is calculated among all people older than age 1 (finer age grada-

tions are not available) and pertains to the total urban and rural populations in each district.

The results reveal a significant and increasing relationship between log mortality rates and high

temeprature days in rural areas. Specifically, days with a temperature exceeding 87◦ F, relative

to a day in the 70◦-72◦F range, increase the annual mortality rate by at least 0.5% with the ef-

19An analogous graph for the real agricultural wage reveals that the negative effect of high temperature days
during the growing season is immediately evident visually, while the non-growing season effect is more difficult to
discern.
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fect increasing with temperature. In contrast, there is little evidence of a relationship between

high temperature days and mortality in urban India, except in the > 97◦ F bin. Although the

95% confidence intervals for the urban estimates are not depicted here to aid the graph’s visual

accessibility, it is notable that none of the other temperature effects is statistically significant and

all are relatively small in magnitude. It is apparent that the response of the all-India mortality

rate to high temperature days in Figure 1 is driven almost entirely by the rural response func-

tion. Appendix Figure 1 repeats this graphical exercise for the infant mortaliy rate and leads to

qualitatively similar conclusions.

Table 5 explores different approaches to summarizing these results with more parsimonious

approaches to modelling temperatures. Across the panels, high temperature days increase annual

mortality rates for people older than age 1 as in column (1) and infants in column (2). The CDD90

specification suggests that a 1 standard deviation increase in CDD90 increases the annual mortality

rate by 7.4% for those above age 1. The other specifications explain the data less well, but project

larger increases in mortality for a 1 standard deviation increase in the relevant variable. Going

forward, we will emphasize the specifications that model daily temperature with CDD90 based on

the goodness of fit criteria. In the case of infants, CDD70 fits the data best and a 1 standard

deviation increase in that variable leads to a 19% increase in the infant mortality rate.

This exercise is repeated for urban areas in columns (3) and (4). The CDD90 variable is asso-

ciated with a statistically significant increase in the age 1+ mortality rate but there is little other

evidence of a relationship between hot days and infant mortality in these columns. It is remarkable

that even India’s urban infants, a group that is widely though to be a fragile population and that

is the concern of an enormous public health literature, are largely protected from temperature

extremes. As such, the estimates of the response function in urban areas, both for adults and

infants, suggest either that urban citizens are better positioned to adapt to temperature shocks,

or perhaps, more plausibly, that there exists a weaker connection between extreme temperatures,

incomes and death owing to the lower dependence on weather contingent forms of production.

Columns (1) through (5) of Table 6 explore whether there are heterogeneous effects of temper-

ature on mortality in rural areas and probes the robustness of the relationship. Column (2) shows

that the magnitude of the parameter associated with the CDD90 variable in rural areas was greater

before 1980 than afterward but that the difference is not statistically significant. Figure 8 provides

some further insight by plotting the CDD90 coefficient from a specification that allows it to vary

across the four eleven year periods that span our entire sample of 1957-2000. It is noteworthy that

there was a decline in the coefficient between the 1957-67 and 1968-1978 periods but there has been

no decline since then which includes years during which the Green Revolution in Indian farming

took hold, significant economic reforms were introduced, and there were important improvements

in rural incomes and in rural health practices. The takeaway from Figure 8 is that the effect of

hot weather in increasing the mortality of rural populations in India has been suprisingly constant

over time. Column (3) finds that the effect of CDD90 is essentially equal in districts above and
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below the median in terms of CDD90. Column (4) suggests that there is little evidence that days

below 50◦ F affect mortality rates in rural India and the column (5) results demonstrate that the

estimate of CDD90 on log mortality rates is insensitive to replacing the region by year time trends

with region by year fixed effects.

The remaining five columns of Table 6 repeat the above analysis on urban areas. A similar

pattern prevails, although if one ignores the sampling errors there seems to be some evidence that

the effect of high temperature days was greater before 1980 and is larger in “cold” districts.

To summarize, the results in this sub-section demonstrate that ambient temperatures play an

important role in determining the starkest aspect of health, the probability of dying, in rural

areas. But in urban areas of India, this effect is largely absent, even among presumably vulnerable

children under the age of one. That is, even though rural and urban residents experience the same

weather extremes, these extremes have a dramatically different effect on these two populations.

5.2.2 Growing versus Non-Growing Seasons

The analysis of rural incomes found that the effect of high temperature days on rural incomes was

predominantly due to high temperature days during the growing season. Here we test whether the

mortality regressions reveal a similar pattern.

Table 6 reports on the estimation of versions of equation (5) for log mortality rates for non-

infants where we experiment with allowing CDD90 to enter separately for the growing season.

In the case of rural areas (column (2)), the point estimate for growing season CDD90 is roughly

double the non-growing season coefficient. However, these models that separately estimate the

effect of hot temperature days in the growing and non-growing season days are demanding of the

data and we cannot reject that the coefficients on these variables are equal. This imprecision is

evident in Appendix Figure 2, especially for the growing season which has fewer high temperature

days. Just as was the case with the income results, too little rainfall has negative consequences for

well-being in rural areas; a rainfall realization in the lowest tercile, relative to the middle tercile,

increases the annual mortality rate by about 3.2% in rural areas.

The urban results are presented in columns (3) and (4). It is evident that the mortality effect

of high temperature days in urban areas is being driven by the effect of non-growing season days.

As Appendix Figure 3 reveals, however, there is an increase in mortality on days where the average

temperature exceeds ≥ 97◦ F in both seasons, at least when the coefficients are take literally.

The model emphasized that temperature shocks can reduce incomes and consequently the

resources available for individuals to consume standard goods like food and shelter and health

preserving goods and directly affect health. In this framework, however, whether a given weather

shock leads to a change in the probability of death via the indirect income channel or the direct

health channel is irrelevant because a linear budget constraint allows agents to use income to

substitute perfectly, on the margin, between consumption and health goods. Nevertheless, it
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remains an interesting question as to whether the mortality effect operates through both channels

or just one of them. Table 3 made clear that the income channel largely operates through high

temperature days in the growing season. This subsection’s finding that high temperature days

in the non-growing season days affect mortality in rural areas and urban areas (where there was

no evidence of an income effect in either season) suggests that both channels are important in

explaining the mortality impacts. It is clear, however, from examining the results in Tables 3 and

6, that a key difference in the effect of hot weather on rural and urban populations in India is that

the indirect income effect which is concentrated during the agricultural growing season has a more

pronounced effect in rural versus urban populations. This is significant as it is during the growing

season (which is furthest from the previous harvest) when malnutrition and hunger are at their

peak and therefore when income shocks are likely to be most lethal.20

5.3 Bank Branch Expansion and the Weather-Death Effect

Our model indicates that if rural citizens had access to improved means of smoothing their con-

sumption (and hence their survival) then this should mitigate the impact of hot weather on mor-

tality. Particularly important in this respect is the credit channel which is central for smoothing

survival in our model and the subject of an extensive theoretical and empirical literature (e.g.

Townsend [1994] and Besley [1995]). Specifically in the context of the model, improved access

to banks should reduce the interest rate at which individuals can borrow to smooth consumption

across shocks which, in turn, should reduce the mortality impact of hot weather by facilitating

greater consumption.

We explore a preliminary test of this possibility by exploiting the rapid expansion of commercial

bank branches into unbanked, rural areas in India during our sample period (see Burgess and Pande

[2005]). Before this expansion rural areas had been largely unbanked. A policy enforced by

the central bank which was introduced in 1977 and removed in 1990 stipulated for each branch

opened in a (typically urban) banked location banks had to open four branches in (typically

rural) unbanked locations. In effect, this policy forced banks to open branches in rural, unbanked

locations with more of these occuring in financially underdeveloped states and reversed the pre-

existing trend of banks opening more branches in financially developed states. By using the

deviations, between 1977 and 1990 and post-1990, from the pre-program linear trend relationship

between a state’s initial financial development and rural branch expansion as instruments, we

are able to identify the policy driven element of rural branch expansion.21 Specifically, we fit an

20The work of nutritionists elucidates how poor nutritional status exacerbates a range of morbidi-
ties making it an important (though albeit indirect) cause of mortality in the developing world (see
Victoria, Adair, Fall, Hallal, Martorell, and Richter [2008]).

21Burgess and Pande [2005] carried their analysis out at the state level. Here we extend their instrumental
variable method to the district level. In Burgess and Pande [2005] the focus was on the impact of rural branch
expansion on poverty. Here the the focus is on the interaction of bank branch expansion and hot weather in a
mortality regression so we use the identification strategy of Burgess and Pande [2005] to instrument both banksdt
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augmented version of equation (6) for the log mortality rate that includes the number of bank

branches and the interaction of bank branches with the CDD90 variable. These two endogenous

variables are instrumented with the number of bank branches in a district in 1961 interacted with

the a post-1976 time trend and the 1961 number of branches interacted with a post-1989 trend

and the interactions of these variables with the CDD90 variable.

Table 7 presents the results for rural areas in columns (1) and (2) where CDD is calculated

over the entire year and separately for the growing and non-growing seasons, respectively. The

top panel reports the key parameter estimates. The middle panel reports the effect of the relevant

temperature variables on the log mortality rate at district-year observations that represent the

25th and 75th percentile of the bank branches variable. When the full year temperature is used,

there is little evidence that banks mitigate the impacts of high temeprature days on the mortality

rate. The column (2) results, however, indicate that moving from the 25th to 75th percentile

of the banks variable essentially eliminates the entire effect of CDD90 on the log mortality rate

and this change is statistically significant. In contrast, there is little evidence that banks mitigate

the mortality consequences of high temperature days that occur outside the growing season. It

is noteworthy that the presence of banks appears most effective at mitigating the temperature

shocks that are most closely related to income shocks. Column (3) provides a falsification exercise

by testing whether the presence of banks in rural areas of a district mitigate the mortality impacts

of high temperature days in urban areas in the same district. This exercise fails to contradict the

results in column (2) as the interaction term is of a small magnitude and statistically insignifcant.

Although these results are preliminary, they point to access to banks and access to credit, more

generally, playing an important role in enabling citizens to withstand the income shocks induced

by hot weather in the growing season. This is a key finding as it suggests that investments in

smoothing technologies like banking systems can play a role in reducing mortality rates, not just

in smoothing consumption. The commercial banks offered lower interest rates than those that

were formerly available via moneylenders which would have improved the ability to borrow. Bank

branches were also required to target priority sectors which included small businesses and small-

scale entrepreneurs, and agriculture. As Burgess and Pande [2005] illustrate, the value of banks

entering rural areas thus extended beyond the financial services they offer. The poorest citizens (for

example agricultural laborers) could benefit from agricultural wages going up (as bank borrowers

shift labor away from this market and into self-employment) and from rising non-agricultural

employment opportunities (which weakened dependence on seasonal, subsistence agriculture) even

if they do not hold bank accounts. Put another way, providing access to banks in rural areas both

as a means of smoothing consumption and of promoting diversification of the rural economy may

be an important means of protecting rural citizens from temperature shocks. Finding means of

making rural citizens more resilient to weather shocks is also likely to become a more pressing

concern as India becomes warmer due to climate change, a subject to which we now turn.

and the interaction between banksdt and CDD90dt.
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5.4 Climate Change and Death

The results in Section 5 above suggest that weather extremes, in the form of hot or dry years, have

strong effects on income and mortality in rural areas and modest impacts on mortality in urban

areas. Both of these sets of results are important in their own right as they suggest that weather

fluctuations may matter a great deal for the welfare of poor citizens in developing countries today.

However, these estimates may also lend some insight into the consequences of climate change in

India.

To shed light on this we have obtained data on the predicted change in India’s climate that

emerges from leading global circulation models (GCMs), the models that climatologists use to

make predictions about how greenhouse gas emissions will lead to likely climate change scenarios.

We refer to this model as ‘Hadley 3’ (the preferred model in use by the Hadley Centre, which

provided climate change predictions for the influential Stern Review) and which has been used

in the Intergovernmental Panel on Climate Change (IPCC) reports. In the Data Appendix we

describe the construction of this model in more detail.

Hadley 3 make predictions about the evolution of daily maximum and minimum temperatures

and precipitation at finely spaced gridpoints all over the world, on every day for the remainder of

the 21st century. We use these predictions (averaged over hundreds of simulations of the models)

to construct a set of temperature predictions for each of India’s districts using a procedure detailed

in the Data Appendix. To align the predicted climatic variation with the inter-annual climatic

variation we use throughout the paper, we use Haldey 3 to predict the average number of days in

which the mean temperature will fall into each of the temperature bins used in the above analysis

for each year from 2015-2099. This generates a variable that we denote TMEAN t
dj , the climate

change model’s prediction for the number of days on which the mean temperature in district d will

fall into temperature bin j for year t; we also calculate the average of this variable over 15 year

periods to smooth out noise in the annual climate projections.

Predictions of climate change are available for several emission scenarios, corresponding to

’storylines’ describing the way the world (population, economies, etc.) may develop over the next

100 years. We focus on the A1FI scenario which is a “business-as-usual” scenarios that assumes the

world does not implement significant greenhouse gas mitigation policies. See the Data Appendix

for more details.

Before proceeding, it is important to underscore that the validity of this paper’s estimates

of the impacts of climate change depend on the validity of the climate change predictions. The

state of climate modeling has advanced dramatically over the last several years, but there is

still much to learn, especially about the role of greenhouse gas emissions on climatic behavior

Karl and Trenberth [2003]. Thus, the Hadley 3 A1FI predictions should be conceived of as a

single realization from a superpopulation of models and scenarios. The sources of uncertainty in

these models and scenarios are unclear, so this source of uncertainty cannot readily be incorporated
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into the below estimates of the impacts of climate change.

Figure 2 provides an opportunity to understand how climate change is expected to change the

full distributions of daily mean temperatures in India. In this figure we compare the predicted dis-

tribution of daily mean temperatures across 18 temperature bins (i.e. TMEAN2070−2099
dj averaged

over districts d, for each temperature bin j) with the actual historical average equivalent over the

observed period used in this paper (i.e., 1957-2000). The resulting plot reveals that there will be

large reductions in the number of days with temperatures ≤ 81◦ F. These reductions are predicted

to be offset by increases in days with temperatures exceeding ≥ 85◦ F. For example, the annual

aveage number of days where the mean temperature is at least 88◦is projected to increase between

the 1957-2000 and 2070-2099 periods by more than 55 days. Thus, the predicted mortality impacts

of climate change rest on the differential mortality impact of the days in the ≤ 81◦ F range, relative

to days with temperatures ≥ 85◦. Due to India’s already warm climate, it is unlikely to get much

benefit from reductions in the number of days in its left tail of the temperature distribution, which

stands in stark contrast to Russia and other relatively cold countries. That is, India will exchange

days that we have estimated to be relatively low mortality days for days that we have estimated

to be high mortality ones.

We now turn to a more precise calculation of the predicted effect of climate change on life

expectancy in rural and urban India. We do this in three steps:

1. Calculate the change in the mortality rate by age group (i.e., infants and age 1+)

for each year. This is simply: ∆Ŷt =
∑

j θ̂j∆TMEAN t
j , where ∆Ŷt is the predicted

change in the log mortality rate, θ̂j is the estimated coefficient on temperature bin j

obtained from Table 4, and ∆TMEAN t
j is the predicted (according to Hadley 3 A1FI)

change in the number of days on which the mean temperature will fall into temperature

bin j in period t averaged across all districts.

2. Apply ∆Ŷt for infants and age 1+ to the 1980 life tables for India.

3. Calculate the change in life expectancy at birth due to the projected change in

the life tables for each year, relative to baseline 1980 life expectancy, for every year

2015-2099. Calculate the change in life expectancy for the 15 year periods, 2015-2029,

..., 2075-2099.

Since there are separte 1980 life tables for rural and urban India, these calculations are done

separately for each of them.

Before turning to a discussion of the results, it is important to be clear about the meaning

of each of these calculations. Specifically for each of the 15 year periods, the exercise produces

an estimate of the life expectancy effect for a person born in that period with a 1980 Indian’s

life expectancy who will experience the climate of the period in which they were born throughout

their life. Consequently, this calculation does not capture the life expectancy effect for a person
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who is born during the 21st century and faces the full set of projected changes in climate. In this

respect, it is appropriate to interpret the calculation as the life expectancy effect of alternative

climate change scenarios or greenhouse gas stabilization scenarios.

Figure 9 reports on the results from this exercise. The rural results are striking as they reveal

a substantial predicted change in life expectancy that begin in the next 15 years and grows dra-

matically throughout the remainder of the 21st century. Specifically, the average Indian born in a

rural area during the 2015-2029 period is expected to lose about 1 year of life expectancy over the

course of their life. This increases to losses of 2.7 years and 6.9 years by 2045-59 and 2075-2099,

respectively. The impact on life expectancies in urban areas is projected to be modestly positive

throughout the 21st century although this estimate may not be statistically significant.22

The results reported in this section suggest that the health costs of predicted climate change in

India could be severe—when standard models of climate change are used in combination with our

estimates of the weather-death relationship, these models predict large increases in the death rate

in India by 2080. Because our focus has been on mortality rather than on morbidity, the effects of

weather on wider health indicators in India are likely to be understated by our estimates. And as

stressed in Section 2, the full welfare impact of weather fluctuations should involve computations of

lost income and of resources spent on health input goods, in addition to those involving heightened

mortality.

There are several reasons that the estimates’ connection to climate change is not 1 to 1. For

example, they may provide upper bound estimates due to individuals’ adaptations to climate

change that will mitigate the consequences of climate change. It seems likely that more heat

resistant agriculture technologies will be developed, technologies to better protect people from

the physical harms of high temperatures are likely to proliferate (e.g., fans and air conditioning),

occupations will shift away from climate-exposed ones, and the balance of populations will shift

from rural to urban areas. Additionally, the climatological models whose climate change predictions

we have used here do not incorporate any possibility of catastrophic change in India’s climate as

a result of a rise in greenhouse gas emissions. That is, while some climatological models predict

that modest rises in temperatures may have catastrophic knock-on effects (e.g. rises in ocean

temperature, widespread melting of Himalayan glaciers, reversal of trade winds, or cessation of the

Southwest monsoon), we have deliberately obtained our climate predictions from climatological

models in which these catastrophic, but highly uncertain and controversial, effects are not in

operation.

On the other hand, these estimates are unlikely to adequately capture all of the negative health

impacts of climate change as there may be other changes that increase people’s vulnerability. For

example, changes in the timing of the monsoon or desertification of soil could greatly increase the

income losses. Further if there is any scope for cross-regional insurance against differential regional-

level shocks, then our estimates are derived from settings in which that insurance is potentially

22We have not calculated the standard errors of these estimates yet. They will be in the next version of the paper.
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mitigating the effects of a region’s shock on its own fortunes.

6 Conclusion

As weather sweeps across the Indian sub-continent it exerts a profound effect on the economic

activities of Indian citizens. Hence the fascination in the Indian media with the rise and ebb of

temperature and with the arrival (or late arrival) of the southwest monsoon. And nowhere is this

influence more keenly felt than amongst rural citizens who depend on basic agriculture (either as

cultivators or laborers) for their livelihoods. It is in these rural parts of India, where structural

change towards less weather-reliant forms of production has been limited, that people feel the brunt

of weather shocks. And these effects are particularly acute when inclement weather coincides with

periods of agricultural production.

That inclement weather affects incomes and employment in these settings is undisputed. What

is less well understood is whether weather shocks still have the power to cause excess mortality

in post-Independence India. Much has been made of the dissapearance of famines during this

period (Sen [1981]) but the high levels of ill-health and malnutrition observed amongst agricultural

laborers and small-scale cultivators in India suggests that their survival may be threatened by

extremes of weather. Hence the obsession with seasonality and with hungry or lean seasons in

discussions of rural welfare (Khandker [2012]). Thus though mass starvation events like famines

may have been eliminated there is always the suspicion that below the media radar hunger and

malnutrition, caused by weather related income shortfalls, may be grinding away at the survival

chances of India’s poorest citizens (Dreze and Sen [1989]). The objective of this paper has been

to find out whether this is the case or not.

In this paper we find that weather and death remain closely related in post-Independence India.

Quasi-random weather fluctuations introduce a lottery in the survival chances of Indian citizens.

But this lottery only affects people living in the rural parts of India where agricultural yields,

wages and prices are adversely affected by hot weather.

In contrast, the citizens of urban India are largely immune to these mortality increasing effects

of inclement weather as are citizens in the US. The effects of weather on death, in short, are highly

unequal even within a single country. This in turn suggests that the effects of climate change will

be highly unequal. Using the coefficients from our analysis of Indian districts combined with two

leading models of climate change we confirm this by demonstrating that the mortality increasing

impacts of global warming will be far more keenly felt by rural Indians relative to their counterparts

in urban India or the US.
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A Data Appendix

A.1 Climate Change Prediction Data

To obtain predictions on the manner in which India’s climate is predicted to change by the end of

the century we use the output of two leading general circulation models. The first is the Hadley

Centre’s 3rd Coupled Ocean-Atmosphere General Circulation Model, which we refer to as Hadley
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3. This is the most complex and recent model in use by the Hadley Centre. We also use predictions

from the National Center for Atmospheric Research’s Community Climate System Model (CCSM)

3, which is another coupled atmospheric-ocean general circulation model (NCAR 2007). The

results from both models were used in the 4th IPCC report (IPCC 2007).

Predictions of climate change from both of these models are available for several emission

scenarios, corresponding to ‘storylines’ describing the way the world (population, economies, etc.)

may develop over the next 100 years. We focus on the A1FI and A2 scenarios. These are ‘business-

as-usual’ scenarios, which are the appropriate scenarios to consider when judging policies to restrict

greenhouse gas emissions.

We obtain daily temperature predictions for grid points throughout India from the application

of A1FI scenario to the Hadley 3 model for the years 1990-2099 and the A2 scenario to the CCSM

3 for the years 2000-2099. The Hadley model gives daily minimum and maximum temperatures,

while the CCSM model reports the average of the minimum and maximum. Each set of predictions

is based on a single run of the relevant model and available for an equidistant set of grid points

over land in India.

We calculate future temperature realizations by assigning each district a daily weather real-

ization directly from the Hadley and CCSM predictions. Specifically, this is calculated as the

inverse-distance weighted average among all grid points within a given distance from the county’s

centroid. These daily predicted temperature realizations are used to develop estimates of the cli-

mate that is predicted in India at the end of this century. The Hadley 3 model has predictions for

the years 1990 through 2099. We utilize the historical predictions to account for the possibility of

model error. In particular, we undertake the following multiple step process:

1. For each Hadley 3 grid point, we calculate the daily mean temperature for each of the year’s

365 days during the periods 1990-2000 and 2070-2099. These are denoted as TH
gt,2070−2099 and

TH
gt,1990−2000, respectively, where the ‘H’ superscript refers to Hadley 3, g indicates grid point

and t references one of the 365 days in a year.

2. We calculate the grid point-specific predicted change in temperature for each of the 365 days

in a year as the difference in the mean from the 2070-2099 and 1990-2000 periods. This is

represented as ∆TH
gt = (TH

gt,2070−2099 − TH
gt,1990−2000).

3. We then take these grid-point specific predicted changes for all 365 days and assign district-

specific predicted changes by taking weighted averages within 250 KM of the district centers.

Again, the weight is the inverse of the square of distance. This procedure yields a predicted

change in the daily mean temperature for all 365 days for each district or ∆TH
dt , where d

denotes district.

4. Using the NCC weather data that has been used throughout this paper, we calculate the

grid-point specific daily mean temperature for each of the 365 days over the 1957-2000 period.
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We then take weighted averages of these daily mean temperatures for all grid points within

100 KM of each district’s geographic center, with the same weights as above. This yields

TNCC
dt,1957−2000.

5. The predicted end of century climate for each day of the year is equal to TNCC
dt,1957−2000 +∆TH

dt .

To preserve the daily variation in temperature, we apply the fifteen temperature bins from

above to these 365 daily means. The resulting distribution of temperatures is the Hadley

3 predicted end of century distribution of temperatures that is utilized in the subsequent

analysis.

In the case of the CCSM 3 predictions, we are unable to account for model error because these

predictions are only available for the years 2000 through 2099, so there are no historical years

available with which to remove model error.
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Figure 1: Mortality Impact of Daily Temperature in India and United States.  

 
Note: The two solid ‘impact’ lines report 10 coefficient estimates, representing the effect on annual (all ages) mortality of 
a single day in each of the corresponding 10 temperature bins, relative to the effect of a day in the 70-72F bin. Dashed 
lines represent the 95% confidence interval of the estimates.  See the text for more details.  
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Figure 2: Historical and Prediction Distribution of Daily Average Temperatures in India 

 
Notes: Historical distribution given by mean daily temperature for each district and year, averaged while weighting by 
district population. Predicted distribution derived using daily data from error-corrected Hadley 3 A1FI model output. Both 
averaged weighted by 1957-2000 district population. See the text for more details.  
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Figure 3: The Effect of Daily Average Temperatures on Log Agricultural Yields. 

 
Note: The solid ‘coefficient’ line reports 10 coefficient estimates, representing the effect on log annual agricultural yields 
of a single day in each of the corresponding 10 temperature bins, relative to the effect of a day in the 70-72°F bin. The 
dashed lines represent the coefficient plus/minus two standard errors. The methodology used to estimate these coefficients 
is explained in detail in Section 4.1. 
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Figure 4: The Effect of Daily Average Temperatures on Log Real Agricultural Wages. 

 
Note: The solid ‘coefficient’ line reports 10 coefficient estimates, representing the effect on log real agricultural wages of 
a single day in each of the corresponding 10 temperature bins, relative to the effect of a day in the 70-72°F bin. The 
dashed lines represent the coefficient plus/minus two standard errors. The methodology used to estimate these coefficients 
is explained in detail in Section 4.1. 
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Figure 5: The Effect of Daily Average Temperatures on Log Agricultural Yields, by Agricultural 
Growing Season. 
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Figure 6: Mortality Impact of Daily Temperature in Rural and Urban India.  
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Figure 7: Mortality Impact of Degree-Days Above 90F in Rural India by Time Period.  
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Figure 8: Predicted Impact of Climate Change on Indian Life Expectancy at Birth, Based on 
Error-Corrected Hadley 3 A1FI Model: 2015-2099 
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Table 1: Descriptive Statistics

1957-1969 1970-1979 1980-1989 1990-2000 1957-1969 1970-1979 1980-1989 1990-2000

Total Death Rate Per 1,000 Population 9.06 7.50 3.87 4.03 9.74 7.67 5.67 5.72
(5.99) (4.24) (2.44) (2.47) (4.48) (3.39) (2.75) (2.24)

Infant (<1) Death Rate Per 1,000 Live 75.70 47.73 28.43 16.25 69.68 50.33 31.38 19.25
Births (63.06) (26.06) (23.85) (17.07) (38.81) (36.91) (20.52) (15.31)

Life Expectancy at Birth 45.2 50.6 56.1 60.1 - 60.1 63.4 66.8

Agricultural Yield Index (kg/hectare) 24.62 30.91 39.20 - - - - -
(11.74) (16.27) (22.74) - - - - -

Agricultural Real Wages (Rs/day) 3.20 3.64 4.89 - - - - -
(1.43) (1.75) (2.16) - - - - -

Manufacturing Earnings Per Worker - - - - 27,310 28,910 31,369 23,670
(Rs/annum) (3,770) (7,059) (6,348) (7,308)

Annual Degree-Days (over 90° F) 99.22 95.39 109.40 106.86 88.86 90.33 109.66 100.13
(95.34) (97.41) (103.06) (104.60) (95.65) (97.18) (104.58) (102.36)

Annual Total Precipitation (cm) 118.31 117.57 114.88 118.49 118.52 120.14 115.24 123.57
(65.28) (64.02) (63.98) (67.25) (68.68) (67.71) (67.33) (72.33)

Notes : Note: All statistics are weighted by total district-area (ie rural/urban) population, with the exception of the Agricultural Yield, Price and
Real Wage indices, which are weighted total crop area.  Standard deviations in parentheses.  Monetary valu

Urban AreasRural Areas

 



Table 2: Weather and Incomes - Rural-Urban Differences, Exposure by Calendar Year

Dependent Variable:
Log (Productivity) Log (Real Wages) Log (Productivity) Log (Real Wages)

(1) (2) (3) (4)

A. Temperature (degree-days over 90F)/10 -0.0023* -0.0023*** 0.0003 0.0012
(std error) (0.0009) (0.0006) (0.0033) (0.0036)
[Effect of 1 std dev in CDD90] [-0.023] [-0.022] [0.002] [0.009]

B. Temperature (degree-days over 80F)/10 -0.0034*** -0.0026*** -0.0006 0.0006
(std error) (0.0006) (0.0004) (0.0013) (0.0013)
[Effect of 1 std dev in CDD80] [-0.126] [-0.098] [-0.021] [0.021]

C. Temperature (degree-days over 70F)/10 -0.0023*** -0.0018*** -0.0010 0.0005
(std error) (0.0004) (0.0003) (0.0008) (0.0008)
[Effect of 1 std dev in CDD70] [-0.132] [-0.101] [-0.053] [0.023]

Observations 8,304 8,304 512 592

Notes: Regressions in columns (1)-(2) use district-level (rural) agricultural data; regressions in columns (3)-(4) use state-level data. 'Productivity' is real
agricultural output per cultivated acre in column (1) and real registered manufacturing output

Rural Urban

 
 



Table 3: Weather and Incomes - Rural-Urban Differences, Exposure by Growing Season

Dependent Variable:
Log (Productivity) Log (Real Wages) Log (Productivity) Log (Real Wages)

(1) (2) (3) (4)

Temperature (degree-days over 80F)/10

Growing Season Temperature -0.0065*** -0.0040*** -0.0001 0.0006
(std error) (0.0011) (0.0005) (0.0017) (0.0015)
[Effect of 1 std dev in CDD80] [-0.147] [-0.086] [-0.002] [0.012]

Non-Growing Season Temperature -0.0007 -0.0013** -0.0013 0.0009
(std error) (0.0004) (0.0005) (0.0016) (0.0017)
[Effect of 1 std dev in CDD80] [-0.013] [-0.041] [-0.034] [0.024]

Test of Equality (GS = NGS) 0.001 0.001 0.565 0.856

Indicator for Rainfall Shock in Lowest Tercile -0.0808*** -0.0134 -0.0306 -0.0264
(0.0083) (0.0073) (0.0283) (0.0656)

Indicator for Rainfall Shock in Highest Tercile -0.0092 -0.0001 -0.0517 -0.0199
(0.0059) (0.0076) (0.0424) (0.0732)

Observations 8,304 8,304 512 592

Rural Urban

Notes: Regressions in columns (1)-(2) use district-level (rural) agricultural data; regressions in columns (3)-(4) use state-level data. 'Productivity' is real
agricultural output per cultivated acre in column (1) and real registered manufacturing output

 



Table 4: Weather and Death - Rural-Urban Differences, Exposure by Calendar Year 

 
Rural 

 
Urban 

 

Effect of Temperature on Log Mortality Rate 

 

Effect of Temperature on Log Mortality Rate 

Dependent Variable: Log (Mortality Rate) Age 1+ Infants 
 

Age 1+ Infants 

  (1) (2)  (4) (5) 

      A. Temperature (degree-days over 
90F)/10 0.0073*** 0.0038* 

 
0.0027* -0.0032 

(std error) (0.0018) (0.0018) 
 

(0.0011) (0.0031) 
[Effect of 1 std dev in CDD90] [0.074] [0.037] 

 
[0.028] [-0.032] 

      B. Temperature (degree-days over 
80F)/10 0.0024** 0.0025** 

 
-0.0001 -0.0022* 

(std error) (0.0008) (0.0008) 
 

(0.0005) (0.0010) 
[Effect of 1 std dev in CDD80] [0.103] [0.108] 

 
[-0.003] [-0.101] 

      C. Temperature (degree-days over 
70F)/10 0.0023*** 0.0026*** 

 
0.0003 -0.0012 

(std error) (0.0007) (0.0006) 
 

(0.0004) (0.0007) 
[Effect of 1 std dev in CDD70] [0.173] [0.190] 

 
[0.021] [-0.090] 

                        
Observations 11,721 11,433  12,089 11,483 

      
      Notes: Regressions are estimated separately by rural/urban sectors and include district fixed effects, year fixed effects, and quadratic region time trends.  
Regressions are weighted by district population, and standard errors are clustered at the district level.  Estimates in panels A, B, and C are from separate 
regressions. All regressions control for rainfall (upper/lower tercile dummies). *** indicates statistically significant at the 1% level, ** at the 5% level, and * at the 
10% level. Residual life expectancy at birth and conditional on surviving past age 1 are 51.01 and 13.85 (Rural) and 59.63 and 15.38 (Urban) 

 



 
 

Dependent Variable: Log(Mortality Rate) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Temperature (degree-days over 90F)/10 0.0073*** 0.0082*** 0.0073*** 0.0075*** 0.0027* 0.0018 0.0027* 0.0037**
(0.0018) (0.0020) (0.0018) (0.0022) (0.0011) (0.0016) (0.0011) (0.0012)

Pre-1980 0.0092** 0.0050*
(0.0029) (0.0020)

Post-1980 0.0064* 0.0019
(0.0025) (0.0016)

"Hot" districts 0.0074*** 0.0025*
(0.0019) (0.0011)

"Cold" districts 0.0072 0.0048
(0.0047) (0.0032)

Temperature (degree-days below 50F)/10 -0.0001 -0.0010
(0.0018) (0.0010)

P-value of equality test 0.484 0.973 0.266 0.450

Same years as the agricultural data No Yes No No No No No Yes No No No No
Region*Year fixed effects? No No No No No Yes No No No No No Yes

Observations 11,721 7,964 11,721 11,721 11,721 11,721 12,089 8,327 12,089 12,089 12,089 12,089

Rural

Table 5: Weather and Death - Robustness Analysis 

Notes: Regressions are estimated separately by rural/urban sectors and include district fixed effects, year fixed effects, and quadratic region time trends. All regressions control for rainfall
(upper/lower tercile dummies) as in Table 2. Regressions are weighted by district population, and standard errors are clustered at the district level. *** indicates statistically significant at the
1% level, ** at the 5% level, and * at the 10% level.

Urban



Dependent Variable: Log (Mortality Rate)
Age 1+ Age 1+ Age 1+ Age 1+

(1) (2) (3) (4)

A. Temperature (degree-days over 90F)/10

Growing Season Temperature 0.0105* 0.0108* 0.0010 0.0013
(std error) (0.0050) (0.0049) (0.0035) (0.0036)
[Effect of 1 std dev in CDD90] [0.026] [0.026] [0.002] [0.003]

Non-Growing Season Temperature --- 0.0064** --- 0.0030*
(std error) (0.0020) (0.0013)
[Effect of 1 std dev in CDD90] [0.055] [0.026]

P-value for test of equality --- 0.407 --- 0.668

Indicator for Rainfall Shock in Lowest Tercile 0.0324* 0.0318* 0.0007 0.0005
(0.0155) (0.0155) (0.0103) (0.0103)

Indicator for Rainfall Shock in Highest Tercile -0.0007 0.0004 -0.0137 -0.0129
(0.0183) (0.0184) (0.0106) (0.0106)

Observations 11,721 11,721 12,089 12,089

Table 6: Weather and Death - Rural-Urban Differences, Exposure by Growing Season
Rural Urban

Notes: Regressions are estimated separately by rural/urban sectors and include district fixed effects, year fixed effects, and quadratic region time trends.
Regressions are weighted by district population, and standard errors are clustered at the distric

 
 
 
 



 

 
 
 

Dependent Variable: Log (Mortality Rate) Rural Rural Urban

IV IV IV
(1) (2) (3)

All-­‐year	
  temperature	
  (degree-­‐days	
  over	
  90	
  F)/10 0.0100***
(0.0038)

[Temperature	
  (degree-­‐days	
  over	
  90	
  F)/10]	
  x -­‐0.0041
	
  	
  	
  [Bank	
  branches	
  (in	
  previously	
  unbanked	
  rural	
  locations)	
  per	
  10,000	
  capita] (0.0106)

Growing	
  season	
  temperature	
  (degree-­‐days	
  over	
  90	
  F)/10 0.0364*** 0.0021
(0.0123) (0.0085)

[Growing	
  season	
  temperature	
  (degree-­‐days	
  over	
  90	
  F)/10]	
  x -­‐0.0902** -­‐0.0010
	
  	
  	
  [Bank	
  branches	
  (in	
  previously	
  unbanked	
  rural	
  locations)	
  per	
  10,000	
  capita] (0.0401) (0.0068)

Non-­‐growing	
  season	
  temperature	
  (degree-­‐days	
  over	
  90	
  F)/10 0.0031 0.0038***
(0.0042) (0.0013)

[Non-­‐growing	
  season	
  temperature	
  (degree-­‐days	
  over	
  90	
  F)/10]	
  x 0.0145
	
  	
  	
  [Bank	
  branches	
  (in	
  previously	
  unbanked	
  rural	
  locations)	
  per	
  10,000	
  capita] (0.0117)

Effect	
  of	
  temperature	
  variable	
  on	
  log	
  (mortality	
  rate)	
   0.0099**
GS:	
  0.0337**	
  
(0.0112),	
  	
   0.0021

	
  	
  	
  	
  	
  	
  for	
  25th-­‐percentile	
  district-­‐year	
  in	
  terms	
  of	
  banks (0.0035) NGS:	
  0.0035	
  
(0.0040)

(0.0059)

Effect	
  of	
  temperature	
  variable	
  on	
  log	
  (mortality	
  rate)	
   0.0082***
GS:	
  -­‐0.0031	
  
(0.0078),	
  	
   0.0017

	
  	
  	
  	
  	
  	
  for	
  75th-­‐percentile	
  district-­‐year	
  in	
  terms	
  of	
  banks (0.0022) NGS:	
  0.0094	
  
(0.0023)

(0.0060)

p-­‐value	
  of	
  difference	
   0.695 GS:	
  0.025	
  	
  	
  	
  
NGS:	
  0.216

0.884

14.22 GS:	
  13.09	
  	
  	
  	
  
NGS:	
  8.33

16.52

Observations 10,960 10,960 11,359

Table 7: Weather and Death - Smoothing via Expansion of Rural Banks

F-­‐statistic	
  (Angrist-­‐Pischke)	
  from	
  first-­‐stage,	
  bank-­‐temperature	
  interaction	
  
instrument(s)

Notes: Regressions are IV regressions in which the endogenous variable (the temperature-bank branch interaction variable(s), for a given
temperature variable(s), as differs across columns) are instrumented with, following Burgess and Pande (2005), the number of bank branches
in a district in 1961 times a post-1976 trend and times a post-1989 trend, each interacted with the relevant temperature variable(s). The level of
the banks variable is omitted but we control for the level effect of the two Burgess-Pande instruments. In the middle panel we report the effect of
the relevant temperature variable(s) (as differ(s) across columns) on the log(mortaltiy rate) at district-year observations that represent the 25th
and 75th percentile of the banks variable (that is, the number of bank branches in previously unbanked rural locations per 10,000 capita)
distribution (weighted by rural population). As a test for potentially weak instruments, in the bottom panel we report the Angrist-Pischke F-
statistic(s) for the first-stage equation(s) of bank branches interacted with the relevant temperature variable(s) regressed on the Burgess and
Pande (2005) instruments interacted with the relevant temperature variable(s).  All regressions also include district fixed effects, year fixed 



 
APPENDIX: 
 
Appendix Figure 1: Infant Mortality Impact of Daily Temperature in Rural and Urban India.  
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Appendix Figure 2: Mortality Impact of Daily Temperature in Rural India, by Agricultural 
Growing Season.  
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Appendix Figure 3: Mortality Impact of Daily Temperature in Urban India, by Agricultural 
Growing Season.  
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